Introducao ao LINUX

¢
Programacgao em Script-Shell

Programa de Educacao Tutorial

Telecomunicagoes

PHIELE)))

Universidade Federal Fluminense
Niter6i-RJ
2004

Prefacio

O Programa de Educagao Tutorial (PET) possui como objetivo maior realizar atividades de pesquisa,
ensino e extensao de forma nao dissociada, isto é, desenvolver projetos que integrem em si estes trés
aspectos. Neste contexto, o grupo PET-Tele desenvolve diversas apostilas, nao como um fim em si
mesmas, mas como forma de realizar também outras atividades.

O desenvolvimento dessas apostilas ¢ iniciado com um trabalho de pesquisa sobre o tema escolhido.
Apos este periodo inicial, produz-se material didatico sobre o assunto, visando transmitir o conheci-
mento adquirido para os alunos do curso de graduacao e outros interessados. Eventualmente, quando
ocorre alguma solicitagao, os alunos do grupo fornecem cursos sobre os assuntos abordados na apostila.

Até o momento, as seguintes apostilas estao disponiveis no site do PET:

HTML Linguagem de programacao para hipertextos, principalmente empregada na construcao de
paginas da Internet (webpages).

LaTeX Sistema de edicao de texto largamente utilizado em meios académicos e cientificos, bem como
por algumas editoras nacionais e internacionais.

LINUX e Script-Shell Introdugao ao sistema operacional GNU /Linux e programagao em utilizando
o shell.

MATLAB Ambiente de simulacao matemaética, utilizado em diversas areas profissionais.

SPICE Ambiente de simula¢ao de circuitos elétricos (analogicos e digitais), utilizado em projeto de
circuitos discretos e integrados.

Nota desta Apostila

Esta apostila visa introduzir o usuéario ao ambiente do sistema operacional Linux da familia UNIX-
Like, explicando seu sistema de arquivos, seus processos caracteristicos e seus comandos. Além disso,
tem por objetivo apresentar programacao Script-Shell, ensinando a criar e executar programas, apre-
sentando os comandos mais utilizados na construcao de scripts, além de manipulacao de variaveis, uso
de estruturas basicas de decisao e controle e exemplos diversos.

A apostila esta dividida em 3 partes:

O contetido da primeira parte abrange um breve historico, alguns conceitos e caracteristicas dos
Sistemas Operacionais, hardware e software havendo maior destaque para o Sistema Operacional
UNIX.

A segunda contém os aspectos basicos do Linux, assim como os principais comandos utilizados
para realizar tarefas no Linux.

A dltima parte da apostila envolve os principais conceitos de programacao utilizando o shell do
Linux.

O principal motivo da abordagem desses 3 temas em uma tnica apostila foi o de levar o usuéario
iniciante a ter uma visao mais ampla do funcionamento de um sistema operacional quando um comando
é digitado na tela de um terminal ou quando executado um script.

Nao se pretende com este manual apresentar todos os comandos do Linux e suas aplicagoes mais
usadas. Cada usudario usard mais um conjunto de comandos do que outros dependendo de seus
objetivos. Existem comandos especificos para redes, para manipulacao de arquivos, para configuracao
de dispositivos, etc. Um livro seria pouco para esgotar todas as facilidades e fungoes que o Linux
oferece.

Espera-se que com essa apostila o usuério iniciante conheca o bésico do Linux de forma clara e o
usuario mais experiente a use como referéncia.

Quanto ao aspecto de programacao, vale lembrar que um usuario nao se tornara um grande pro-
gramador apenas lendo uma apostila ou um livro. E preciso pratica, fazer programas, testar funcoes,
estudar programas prontos para entender seu funcionamento, etc. Uma grande vantagem do Linux é
que suas distribuicoes vém com os scripts abertos, para que o usuério possa ler, entender e adaptar
as suas necessidades, podendo até mesmo fazer uma nova distribuicao com base na outra. Bastando
para isso, vontade de aprender e curiosidade. As man pages do Unix e dos interpretadores de coman-
dos como o bash possuem tudo o que for necessario para entender os comandos de uma forma mais
completa.

No fim da apostila, se encontra um guia de sites, livros e apostilas usados como base para a
construcao desta. E outras referéncias importantes contendo um amplo e importante contetido para
o leitor usar afim de aprimorar seu conhecimento no Linux e programagcao utilizando o shell.

UNIVERSIDADE FEDERAL FLUMINENSE i PETIELE)))

Sumario

Prefacio

1 Conceitos Gerais

2

1.1 Introducao ao Hardware
1.1.1 Resolucao de problemas X Mapeamento de dominios
1.1.2 Funcgoes logicas e aritméticas basicas
1.1.3 Implementacao de funcoes matematicas por circuitos
1.1.4 Computador X Maquina de niveis

1.2 Introducao ao software
1.2.1 Computador X Sistema Operacional
1.2.2 Interface de comunicacao com o Sistema Operacional (SO)
1.2.3 Interpretador de comandos (shell) de um SO

1.3 Familia UNIXI
1.3.1 Sistemas UNIX' 0 oo
1.3.2 Interfaces do UNIXI o

Introducao ao Linux

2.1 Aspectos basicos do Linux|
2.1.1 Startup e shutdown,
2.1.2 Abertura de secao no Linux L L
2.1.3 Usuario, superusuario (root), grupos, acesso, prote¢ao
2.1.4 Sessao, login, password, logout
2.1.5 Consoles virtuails e

2.2 Sistema de arquivos oo e
2.2.1 Sistema hierarquico, arvore de diretérios, montagem de ramificacoes
2.2.2 Tipos basicos de arquivos: plain files, directory
2.2.3 Permissoes para acesso a arquivos o e e e e e e e e e e e
2.2.4 DITetOrios e e e e e e e e e e e e

2.3 _Processos e e e e
2.3.1 Processos e subprocessos
2.3.2 Controle de processos

Comandos

3.1 Comandosde ajuda

3.2 Comandos e utilitarios basicos
3.2.1 Comandos de manipulacao de arquivos

3.2.2

Redirecionamento de entrada e saida

il

i o

=] O O O O s i W W NN NN

10
10
10
11
11
11
11
12
12
14
15
15
16

18
18
19
19
34

Sumdrio Sumdrio
3.3 Expressoes Regulares e Metacaracteres 44

4 Introducao ao script-shell para LINUX 46
4.1 Aspectos basicos L e 46
4.1.1 Script e Script Shell 46

4.2 Execucao do programa Lo 47
4.2.1 Erros na execucaol. e 48

4.2.2 Quoting e e e e 48

4.3 Comentarios e e e e 49
4.4 Impressao na tela] 50
4.5 Passagem de parametros e argumentos L. 51
4.5.1 Leitura de parametros 53

4.6 Funcoes e e 5%}
4.6.1 Execucao de script por outro scripto o7

4.7 Depuracao e e e e 59

5 Manipulacao de variaveis 60
5.1 Palavras Reservadas e 60
5.2 Criacao de uma variavelo 60
5.3 Delecao de uma variavel oL 62
5.4 Visualizacao de variavels L 62
5.5 Protecao de uma variavelo 62
5.6 Substituicao de variaveis L L L 62
5.7 Variavels em vetores e e e e e e e e e 63
5.8 Variaveis do sistemal L e e e e e 63

6 Testes e Comparacoes em Script-Shell 66
6.1 Codigo de retorno|. 66
6.2 Avaliacao das expressOes e e e e 66
6.3 Operadores booleanos 67
6.4 Testes NUMETICOS . . . v v v v v v e i o s e e e e e e e e e e e e 67
6.4.1 O Comando let! 68

6.5 Testes de Strings e 69
6.6 Testes de arquivos L 71

7 Controle de fluxo 72
7.1 Decisao simples 72
7.2 Decisao maltipla, 73
7.2.1 O comando casel 73

7.3 Controle de loop 74
731 While e e 74

732 Until e e 75

1.3.3 For . ..o e e e e e e 75

A O Projeto GNU e o Linux 78
A1 Software Livre e 78

UNIVERSIDADE FEDERAL FLUMINENSE

PETIELE)))

v

Sumdrio Sumdrio

B _Editor de textos vi 80
B.1 _Comandos internos - vi e e 80
B.2 Comandos da ultima linha - vi 81
Referéncias Bibliograficas 82

UNIVERSIDADE FEDERAL FLUMINENSE 1 PETELE)))

Capitulo 1

Conceltos Gerais

1.1 Introducao ao Hardware

1.1.1 Resolucao de problemas X Mapeamento de dominios

Como ja foi visto em outras disciplinas, é possivel descrever situacoes através de equacoes. Por
exemplo, na Fisica, temos as leis da natureza mapeadas por equacoes, permitindo que antecipemos
os resultados. Conhecendo a equacao que descreve o problema, que pode estar em um dominio
complicado, podemos transporté-la para outro dominio mais simples (que ja pode ter uma solugao
conhecida), onde obtemos resultados que podem ser levados de volta ao dominio inicial. A resolugao
do problema pode ser definida em quatro etapas:

1. Mapeamento do problema real em um problema matematico;
2. Equacionamento do problema matematico;
3. Mapeamento do equacionamento em um algoritmo;

4. Adequacao do algoritmo a uma linguagem de programacao.

1.1.2 Funcgoes logicas e aritméticas basicas

E possivel a representacio de todo umn sistema numérico utilizando apenas "zeros"e "uns". Chamamos
esse sistema de sistema binario e foi desenvolvida com ele uma logica, a 1ogica BOOLEANA. Através
dela, podemos implementar solucoes num dominio de facil manipulagao, uma vez que podemos con-
siderar, por exemplo, uma lampada acesa como nivel logico '1’ e uma apagada como ’0’. Do mesmo
modo, podemos trabalhar com tensao elétrica:

com tensao - '1’;
sem tensao - ’0’.

Tabela das fungoes logicas:

Capitulo 1. Conceitos Gerais 1.1. Introducao ao Hardware

A | B | AND | OR | XOR | NAND | NOR | XNOR | NOT A
010 0 0 0 1 1 1 1
01 0 1 1 1 0 0 1
110 0 1 1 1 0 0 0
111 1 1 0 0 0 1 0

Tabela 1.1: Tabela de Funcoes Logicas

1.1.3 Implementacao de fungoes matematicas por circuitos

Uma vez conhecida a Logica Booleana podemos, através da combinacao de OR’s, AND’s, etc, construir
circuitos capazes de somar, multiplicar, subtrair, enfim, realizar toda e qualquer operacao matematica.

1.1.4 Computador X Maquina de niveis

Um computador é uma méquina digital capaz de solucionar problemas através de instrucoes que lhe
sao fornecidas. Cada computador tem sua linguagem de maquina, que consiste em todas as instrucoes
primitivas que a maquina pode executar. Na verdade, pode ser dito que uma maquina define uma
linguagem e uma linguagem define uma maquina.

Essas instrucoes mais basicas do computador geralmente se resumem a adicionar, verificar se um
numero é zero ou mover um dado. E estas sao realizadas pelo circuito eletronico. Seria complicado
para um humano escrever um programa com base nestas simples instrucoes. Uma solucao para esse
problema é escrever o programa em uma linguagem (que chamaremos de L2) diferente da linguagem
de maquina (L1). Entdo a execugdo de um programa escrito em L2 devera acontecer em duas etapas.
Primeiro L2 é transformada * em L1. Em seguida L1 é executada diretamente. Assim, poderiamos
pensar na existéncia de uma maquina virtual cuja linguagem de méaquina é L2. Estentendo esse
exemplo, poderiam ser criadas outras linguagens L3, L4, L5, etc..., até atingir um nivel de linguagem
conveniente ao ser humano. Como cada linguagem utiliza sua anterior como base, podemos pensar no
computador como sendo composto por varias camadas ou niveis, uma maquina multinivel.

Em grande parte dos computadores atuais hé cerca de 7 niveis. A seguir ha uma breve apresentacao
de cada um desses niveis. Veja Fig. [1.1.

™
4

—

Figura 1.1: Esquema de niveis de um computador.

e Nivel 0 - E o hardware da maquina. Consiste nas portas logicas formando os circuitos.

e Nivel 1 - E o nivel onde estao os microprogramas. E o verdadeiro nivel de linguagem de
méquina. Esses microprogramas interpretam as instruc¢oes do nivel 2, para o nivel 0 executar.

!Entende-se por transformacio de uma linguagem em outra como tradu¢io ou interpretacio.

UNIVERSIDADE FEDERAL FLUMINENSE 3 PETELE)))

Capitulo 1. Conceitos Gerais 1.2. Introdugao ao software

e Nivel 2 - Nivel de maquina convencional. Contém o conjunto de instrugoes que serao interpre-
tados pelo microprograma.

e Nivel 3 - E um nivel hibrido pois possui instrugoes do nivel 2 e outras caracteristicas novas. E
chamado de sistema operacional.

e Nivel 4 - Nivel de montagem.
e Nivel 5 - Contém as linguagens usadas pelos programadores para resolver programas.

e Nivel 6 - Consiste nos programas feitos para trabalhar em determinada aplicacao. Ex: editores
de texto, simuladores matemaéticos, elétricos, etc.

1.2 Introducao ao software

O software de um computador pode ser dividido, basicamente, em duas categorias:

e Programas de sistema - Gerenciam a operacao do computador. O mais importante destes é o
Sistema Operacional.

e Programas de aplicacao - Sao aqueles que o usudrio trabalha usualmente para resolver determi-
nados problemas como editores de imagem, texto, jogos, etc.

1.2.1 Computador X Sistema Operacional

O Sistema Operacional controla todos os recursos do computador e fornece a base sobre a qual os
programas e aplicativos sao escritos. Ele é a interface do usudrio e seus programas com o computador e
responsavel pelo gerenciamento de recursos e periféricos (como memoria, discos, arquivos, impressoras,
CD-ROMs, etc.) e a execugao de programas.

A parte mais baixa desta interface com o hardware é considerada o Kernel do sistema operacional,
traduzindo: Cerne do SO. E no kernel que estdo definidas funcées para operacdo com periféricos
(mouse, disco, impressora, interfaces serial /paralela), gerenciamento de memoria, entre outros.

O kernel é a parte mais importante do sistema operacional, pois, sem ele, a cada programa novo que
se criasse seria necesséario que o programador se preocupasse em escrever as fun¢oes de entrada/saida,
de impressao, entre outras, em baixo nivel. Por isso, quando ha periféricos que o kernel nao tem
funcao pronta, é necessario escrever a interface para eles.

1.2.2 Interface de comunicagao com o Sistema Operacional (SO)

O SO pode ser visto como uma maquina estendida, quando apresenta ao usuario uma méaquina virtual
equivalente ao hardware, porém muito mais simples de programar. Ele isola o usuério dos detalhes de
operacao do disco.

Ele também pode ser visto como gerente de recursos ao passo que ele gerencia os usuarios de cada
um dos recursos da maquina, combinando o tempo de uso de cada um e garante o acesso ordenado
de usuarios a recursos através da mediacao dos conflitos entre as requisicoes dos diversos processos
usudrios do sistema. Por exemplo, o controle que o sistema operacional faz com os pedidos de diferentes
usuarios, em uma rede, para utilizar a impressora.

UNIVERSIDADE FEDERAL FLUMINENSE 4 PETELE)))

Capitulo 1. Conceitos Gerais 1.3. Familia UNIX

1.2.3 Interpretador de comandos (shell) de um SO

No caso do SO UNIX, o interpretador de comandos é chamado Shell e exerce a funcao de um programa
que conecta e interpreta os comandos digitados por um usuério. E a interface que o usuario utiliza
para enviar comandos para o sistema.

Dos véarios programas Shell existentes, o Bourne Shell, o Korn Shell e o C Shell se destacam por
serem os mais utilizados e conhecidos. Mas qualquer programador pode fazer o seu Shell. Estes shells
tornaram-se conhecidos pois ja vinham com o sistema, exceto o Korn que tinha que ser adquirido
separadamente. O Bourne Shell vinha com o System V e o C Shell com o BSD. O Korn Shell € uma
melhoria do Bourne Shell. Ha também o Bash (Bourne Again Shell). Mais informagoes sobre estes
shells podem ser vistas no capitulo 4.

Os comandos podem ser enviados de duas maneiras para o interpretador: de forma interativa e
nao-interativa.

Interativa: os comandos sao digitados no prompt de comando e passados ao interpretador de co-
mandos um a um. Neste modo, o computador depende do usuério para executar uma tarefa ou
préoximo comando.

Nao-interativa: sao usados arquivos de comandos criados pelo usuério (scripts) para o computador
executar os comandos na ordem encontrada no arquivo. Neste modo, o computador executa os
comandos do arquivo um por um e dependendo do término do comando, o script pode checar
qual serd o proximo comando a ser executado. O capitulo 4/ descreve a construcao de scripts.

1.3 Familhia UNIX

1.3.1 Sistemas UNIX

O UNIX é um sistema operacional multitarefa, ou seja, permite a utilizacao do processador entre varias
tarefas simultaneamente, multiusuério, disponivel para diversos hardwares. Ele possui a capacidade
de criar opcoes especificas para cada usudrio, as quais sao ativadas quando o usuario se loga ao
computador.

As raizes do UNIX encontraram-se na necessidade, na década de 70, de um sistema multitarefa
confidvel e aplicavel ao ambiente dominante na época, um mainframe (um grande computador central)
e uma série de terminais ligados a ele. No meio da programacao, costuma-se dizer que o UNIX foi
projetado por programadores para programadores ja que possui certas caracteristicas desejadas por
eles como o de ser um sistema simples com grande flexibilidade.

Histérico do UNIX
Abaixo temos um cronograma da criagao do UNIX:

e Décadas de 40 e 50:

Todos os computadores eram pessoais quanto a forma de utilizacao. O usudrio reservava um
horério para utiliza-lo.

e Década de 60:

Através dos sistemas Batch , o usuario enviava ao centro de processamento de dados um job
em cartoes perfurados para que esse fosse processado pelo computador. Aproximadamente uma

UNIVERSIDADE FEDERAL FLUMINENSE 5 PETELE)))

Capitulo 1. Conceitos Gerais 1.3. Familia UNIX

hora depois da submissao, o usuario podia buscar os resultados de seu programa. Porém, se
houvesse algum erro no programa escrito, o usuério s6 saberia horas depois, perdendo seu tempo.

Para resolver esse problema, foi criado um sistema de compartilhamento de tempo, o CTSS, no
MIT, onde cada usuério tinha um terminal on-line & sua disposicao.

Apos o CTSS, os Laboratoérios Bell com o MIT e a General Eletric comecaram um programa
grandioso de criar um novo sistema operacional que suportasse centenas de usuarios simultane-
amente em regime de compartilhamento de tempo (timesharing). Tal sistema foi denominado
MULTICS (MULTiplexed Information and Computing Service), que seria multi-usuario, mul-
titarefa e teria um sistema de arquivos hierarquico.

e Década de 70:

A AT&T, controladora da Bell Labs, insatisfeita com o progresso do MULTICS cortou o projeto
e alguns programadores da Bell que trabalharam no projeto, como Ken Thompson, implemen-
taram a versao monousuario do MULTICS em linguagem de montagem em um minicomputador,
o PDP-7. Brian Kernighan, outro programador da Bell, deu o nome do novo sistema de UNICS
como deboche ao nome do sistema anterior. Mais tarde o nome foi mudado para o conhecido
UNIX.

Em seguinda, o UNIX foi escrito para maquinas do tipo PDP-11. E como era necessario rees-
crever o sistema toda vez que ele fosse transportado para outra maquina, Thompson reescreveu
o UNIX em uma linguagem de alto nivel desenvolvida por ele, a Linguagem B. Para corrigir
algumas imperfei¢oes, Denni Ritchie, que também trabalhava na Bell Labs, desenvolveu a Lin-
guagem C. Juntos, em 1973, eles reescreveram o UNIX em C. Dessa forma, foi garantida a
portabilidade.

Em 1974, Thompson e Ritchie publicaram um artigo sobre o novo sistema operacional UNIX,
o0 que gerou um grande entusiasmo no meio académico. Como a AT&T era um monopélio
controlado atuante na area das telecomunicagoes, nao foi permitida sua entrada no ramo da
computacao. Assim, a Bell Labs nao colocou objecoes para licenciar o UNIX para as universi-
dades e empresas.

Em 1977 existiam cerca de 500 computadores com UNIX no mundo todo.

Pelo fato do UNIX ser fornecido com seu codigo fonte completo, muitas pessoas passaram a
estuda-lo e organizar seminarios para trocas de informacoes, visando a eliminacao de Bugs e
inclusao de melhoramentos. A primeira versao padrao do UNIX foi denominda Versao 6 pois
estava descrita na sexta edicao do Manual do Programador UNIX.

e Década de &0:

Com a divisao da AT&T em varias companhias independentes, imposta pelo gorverno americano
em 1984, foi possivel a criacao de uma subsididria dela no ramo da computacao. Entao foi
lancado pela AT&T a primeira versao comercial do UNIX, o System III, seguida pelo System
V |, sendo que cada versao era maior e mais complicada que a antecessora.

Auxiliada pela DARPA (Defense Advanced Research Projects Agency), a Universidade de Berke-
ley passou a distribuir uma versao melhorada da Versao 6, chamada 1BSD (First Berkeley Soft-
ware Distribution), seguida pela 2BSD, 3BSD e 4BSD. Esta ultima possuindo muitos melhora-
mentos, sendo o principal, o uso de memoria virtual e da paginagao, permitindo que programas

UNIVERSIDADE FEDERAL FLUMINENSE 6 PETELE)))

Capitulo 1. Conceitos Gerais 1.3. Familia UNIX

fossem maiores que a memoria fisica. Também, a ligacao de maquinas UNIX em rede, desen-
volvida em Berkeley, fez com que o padrao de rede BSD, o TCP/IP, se tornasse padrao universal.
Essas modificacoes fizeram com que fabricantes de computadores, como a Sun Microsystems e
a DEC, baseassem suas versoes no UNIX de Berkeley.

Em 1984 ja existiam cerca de 100.000 computadores com UNIX rodando em diferentes platafor-
mas.

No final da década, estavam circulando duas versoes diferentes e incompativeis, a 4.3BSD e o
System V Release 3. Isso tornou praticamente impossivel aos fornecedores de software ter a
certeza de que seus programas pudessem rodar em qualquer sistema UNIX.

Entao, o Comité de Padronizacao do IEEE fez a primeira tentativa de unificacao dos dois
padroes. O nome escolhido do projeto foi POSIX (Portable Operating System). Foi criado
apos grandes discussoes o padrao denominado 1003.1, contendo a intersecao das caracteristicas
tanto da 4.3 BSD quanto do System V. Porém, um consoércio, denominado OSF (Open Software
Foundation), foi formado principalmente pela IBM (que comercializava o sistema AIX), DEC,
Hewlett-Packard com o intuito de formar um sistema de acordo com o padrao 1003.1, além de
caracteristicas adicionais. Em reagao, em 1988 a AT&T e Sun se unem no consorcio UI (UNIX
International) para desenvolver Solaris e UNIXWare.

Com isso, passaram a existir, novamente, versoes diferentes oferecidas pelos consércios, tendo
como caracteristica comum o fato de serem grandes e complexas, contrariando a idéia principal

do UNIX

Uma tentativa de fuga desses sistemas foi a criagao de uma nova versao UNIX-/ike mais simples
e menor, o sistema do tipo MINIX.

e Em 1997, foram vendidos cerca de 4 milhoes de sistemas UNIX no mundo todo.

Alguns dos Sistemas Operacionais UNIX atuais sdo: BSD (FreeBSD, OpenBSD e NetBSD), So-
laris (anteriormente conhecido por SunOS), IRIX, AIX, HP-UX, Tru64, Linux (nas suas milhares de
distribuigoes), e até o Mac OS X (baseado num kernel Mach BSD chamado Darwin).

1.3.2 Interfaces do UNIX

Ha 3 tipos de interface do sistema UNIX que podem ser identificadas:

e Interface de chamadas de sistema;
e Interface de biblioteca de procedimentos;

e Interface formada pelo conjunto de programas utilitarios, considerada erroneamente por alguns
usudarios como sendo a verdadeira interface do UNIX.

UNIVERSIDADE FEDERAL FLUMINENSE 7 PETELE)))

Capitulo 2

Introducao ao Linux

Diferentemente do que se é levado a pensar, o Linux é uma implementacao independente do sistema
operacional UNIX. O Linux propriamente dito ¢ um kernel, nao um sistema operacional completo.
Sistemas completos construidos em torno do kernel do Linux usam o sistema GNU que oferece um
shell, utilitarios, bibliotecas, compiladores e ferramentas, bem como outros programas como os editores
de texto. Por essa razao, Richard M. Stallman, do projeto GNU, pede aos usuérios que se refiram ao
sistema completo como GNU /Linux. No apéndice, ha mais informagdes sobre o projeto GNU.

O desenvolvimento do Linux iniciou a partir de um projeto pessoal de um estudante da Univeridade
de Helsinki, na Finlandia, chamado Linus Torvalds. Ele pretendia criar um sistema operacional mais
sofisticado do que o Minix, um UNIX relativamente simples cujo codigo fonte ele tinha disponivel. O
Linux obedece ao padrao estabelecido pelo governo norte americano, POSIX. O POSIX é o padrao da
API (Application Programming Interface) UNIX, referéncias para desenvolvedores da familia UNIX-
like. Desde a apresentacao do Linux em 5 de outubro de 1991, por Linus Torvalds, um grande nimero
de pessoas envolvidas com programacao comegou a desenvolver o Linux. O nome Linux deriva da
juncao Linus + UNIX = Linux.

Portabilidade

Linux é hoje um dos kernels de sistema operacional mais portados, rodando em sistemas desde o
iPaq (um computador portatil) até o IBM S/390 (um massivo e altamente custoso mainframe), embora
este tipo de portabilidade nao fosse um dos objetivos principais de Linus Torvalds. Seu esfor¢o era
tornar seu sistema portatil no sentido de ter habilidade de facilmente compilar aplicativos de uma
variedade de fontes no seu sistema. Portanto, o Linux originalmente se tornou popular em parte
devido ao esforco para que as fontes GPL ou outras favoritas de todos rodassem no Linux.

Distribuicoes

O sistema operacional completo (GNU/Linux) é considerado uma Distribui¢do Linux. E uma
colecao de softwares livres (e as vezes nao-livres) criados por individuos, grupos e organizagoes ao redor
do mundo, e tendo o kernel como seu nicleo. Atualmente, companhias como a Red Hat, a SuSE,a
MandrakeSoft ou a Conectiva, bem como projetos de comunidades com a Debian ou a Gentoo,
compilam o software e fornecem um sistema completo, pronto para instalacao e uso. Além disso, ha
projetos pessoais como o de Patrick Volkerding que fornece uma distribuicao Linux, a Slackware e
Carlos E. Morinoto que langou a distribuicao chamada Kurumin. Esta dltima roda em CD, bastando
as configuracoes do computador aceitarem o boot pelo drive do CD.

Capitulo 2. Introducdao ao Linux 2.1. Aspectos basicos do Linux

Logo que Linus Torvalds passou a disponibilizar o Linux, ele apenas disponibilizava o Kernel com al-
guns comandos basicos. O proprio usuario devia arrumar os outros programas, compila-los e configura-
los. Para evitar esse trabalho, comecou entao a disponibilizacao de programas pré-compilados para
o usudrio apenas instalar. Foi assim que surgiu a MCC (Manchester Computer Centre), a primeira
distribuicao Linux, feita pela Universidade de Manchester. Algumas distribui¢oes sao maiores, outras
menores, dependendo do nimero de aplicativos e sua finalidade. Algumas distribui¢oes de tamanhos
menores cabem em um disquete com 1,44 MB, outras precisam de varios CDs. Todas elas tem seu
publico e sua finalidade, as pequenas (que ocupam poucos disquetes) sao usadas para recupera¢ao de
sistemas danificados ou em monitoramentos de redes de computadores. O que faz a diferenga é como
estao organizados e pré-configurados os aplicativos.

2.1 Aspectos basicos do Linux

2.1.1 Startup e shutdown

Correspondem respectivamente aos procedimentos de ligar e desligar o computador. O primeiro diz
respeito basicamente ao fornecimento de energia para o funcionamento dos circuitos eletronicos da
maquina e nao requer do usuario grandes precaucoes. Por outro lado o processo de Shutdown requer
cuidado, uma vez que o desligamento inadequado do computador pode causar danos ao sistema ope-
racional destruindo as tabelas internas de que ele necessita para funcionar. Quando o computador
"trava', portanto, desliga-lo deve ser a ultima escolha. Uma opcao é iniciar outra sessao, verificar
onde esta o problema e encerrar a sessao travada com um comando apropriado.

2.1.2 Abertura de secao no Linux

Para usar o Linux é preciso em primeiro lugar, que o usuario digite seu nome e sua senha, que sao lidos
e verificados pelo programa login. No UNIX um arquivo de senha é usado para guardar informagoes
possuindo uma linha para cada usuario, contendo sua identificacao alfabética e numérica, sua senha
criptografada, seu diretério home, além de outras informagoes. Quando o usuério se identifica, o
programa, login criptografa a senha que acabou de ser lida do terminal e a compara com a senha
do arquivo de senhas para dar permissao ao usudario. Esse arquivo com as informagoes dos usuéarios
normalmente é encontrado no arquivo: /etc/passwd. As senhas criptografadas ficam no arquivo
/etc/shadow.

2.1.3 Usuério, superusuério (root), grupos, acesso, protegao

O principio da seguranca do sistema de arquivo UNIX estd baseado em usudrios, grupos e outros
USUATios.

Usuério : é a pessoa que criou o arquivo. O dono do arquivo.

Grupo : é uma categoria que retne varios usuarios. Cada usudrio pode fazer parte de um ou mais
grupos, que permitem acesso a arquivos que pertencem ao grupo correspondente. Por padrao, o
grupo de usuérios inicial € o mesmo de seu nome de usuério. A identificacdo do grupo é chamada
de gid (group id).

Outros : é a categoria de usudrios que nao se encaixam como donos ou grupos do arquivo.

UNIVERSIDADE FEDERAL FLUMINENSE 9 PETELE)))

Capitulo 2. Introducdao ao Linux 2.2. Sistema de arquivos

As permissoes de acesso para donos, grupos e outros usuarios sao independentes uma das outras,
permitindo assim um nivel de acesso diferenciado.

A conta root é também chamada de super usudrio. Este é um login que nao possui restri¢oes de
segurancga. A conta root somente deve ser usada para fazer a administracao do sistema. Utilize a
conta de usuério normal ao invés da conta root para operar seu sistema. Uma razao para evitar usar
privilégios root é devido a facilidade de se cometer danos irreparaveis ao sistema.

2.1.4 Sessao, login, password, logout

No Linux, a entrada no sistema é feita com um login e um password, onde login é o nome do usuério
e password é uma senha de seguranca. Uma vez efetuado o login, o usuario entra em sua conta e
¢ aberta uma sessao onde se interage diretamente com o Shell. O logout (para finalizar a conta) é
efetuado através do comando ’exit’.

2.1.5 Consoles virtuais

Terminal (ou console) é o teclado e tela conectados em seu computador. O Linux faz uso de sua
caracteristica multi-usuario usando principalmente "terminais virtuais". Um terminal virtual é uma
segunda sessao de trabalho completamente independente de outras que pode ser acessado no com-
putador local ou remotamente via telnet, rsh, rlogin, etc.

No Linux, em modo texto, vocé pode acessar outros terminais virtuais segurando a tecla <ALT>
e pressionando <F1> a <F6>. Cada tecla de funcao corresponde a um ntimero de terminal do 1 ao 6
(0 sétimo é usado por padrao pelo ambiente gréafico X). O Linux possui mais de 63 terminais virtuais,
mas apenas 6 estao disponiveis inicialmente por motivos de economia de memodria RAM. Se estiver
usando o modo gréfico, vocé deve segurar <CTRL>-+<ALT> enquanto pressiona uma tecla de <F1>
a <F6>.

Um exemplo pratico: se vocé estiver usando o sistema no Terminal 1 com um login qualquer e
desejar entrar como root para instalar algum programa é s6 abrir um terminal virtual e realizar a
tarefa desejada.

2.2 Sistema de arquivos

Arquivos sao centrais para o UNIX de uma maneira nao encontrada em outros sistemas operacionais.
Comandos sao arquivos executaveis, usualmente encontrados em locais previsiveis na arvore de di-
retorios. Privilégios do sistema e permissoes sao controlados em grande parte através de arquivos.
Dispositivos 1/O e arquivos I/O nao sao distinguidos nos niveis mais altos. Até mesmo a comuni-
cacao entre processos ocorre através de entidades similares a arquivos. Toda a segurancga do sistema
depende, em grande parte, da combinagao entre a propriedade e protecoes setadas em seus arquivos
e suas contas de usuéarios.

2.2.1 Sistema hierarquico, arvore de diretérios, montagem de ramificacoes

O UNIX tem uma organiza¢ao de diretorios hierdrquica em formato conhecido como filesystem. A
base desta arvore é um diretério chamado ‘root directory‘. Em sistemas UNIX, todo espago em disco
disponivel é combinado em uma tnica arvore de diretério abaixo do /, sendo que o local fisico onde
um arquivo reside nao faz parte da especificacao do UNIX.

UNIVERSIDADE FEDERAL FLUMINENSE 10 PETELE)))

Capitulo 2. Introducdao ao Linux 2.2. Sistema de arquivos

2.2.2 Tipos basicos de arquivos: plain files, directory

Os arquivos sao onde os dados estao gravados. Um arquivo pode conter um texto, uma musica,
programa, etc. Todo sistema UNIX reconhece pelo menos trés tipos de arquivos:

e Arquivos comuns: Usados para armazenar dados. Os usuéarios podem acrescentar dados
diretamente em arquivos comuns, como, por exemplo, através de um editor. Os programas
executaveis também sao guardados como arquivos comuns.

e Arquivos de diretério: Um arquivo de diretério contém uma lista de arquivos. Cada insercao
na lista consiste em duas partes: o nome do arquivo e um ponteiro para o arquivo real em disco.
Por outro lado, os diretérios se comportam exatamente como arquivos comuns, exceto pelo fato
de que alguns comandos usados para manipulacao de arquivos comuns nao funcionarem para
arquivos de diretoério.

e Arquivos especiais: Estes arquivos sao usados para fazer referéncia a dispositivos fisicos como
os terminais, as impressoras, os discos. Eles sao lidos e gravados como arquivos comuns, mas
tais associacoes causam a ativagao do dispositivo fisico ligado a ele.

O Linux é case sensitive, ou seja, ele diferencia letras maitsculas e mintsculas nos arquivos. O
diretorio, como qualquer outro arquivo, também é case sensitive. Em um mesmo diretério, nao podem
existir dois arquivos com o mesmo nome ou um arquivo com mesmo nome de um subdiretério. Os
diretorios no Linux sdo especificados por uma "/".

OBS: Estamos habituados a ver os nomes de arquivos como sendo: nome.ext, onde ext é a extensao
do tipo de arquivo, por exemplo .txt, .html, .doc. Porém, no Linux os nomes nao precisam seguir
essa regra. Os nomes podem podem ser formados por varias extensoes, como: lista.ord.txt,
nomes.maius.classe, livros.meu.ord.txt.

O Linux organiza seu filesystem através de inodes. Inodes sao estruturas de dados em disco que
descrevem e armazenam os atributos do arquivo, incluindo sua localizagao. Campos de um inode: user,
group, tipo do arquivo, tempo de criacao, acesso, modo (modifica¢do), nimero de links, tamanho e
endereco no disco.

Existem mecanismos que permitem que vérios filenames refiram-se a um tnico arquivo no disco.
Esses mecanismos sao os links. Existem dois tipos de links: hard link (ou simbélico) ou soft link.

e hard link: associa dois ou mais filenames como mesmo inode. Os hard links compartilham o
mesmo bloco de dados embora funcionando como entradas de diretério independentes.

e soft link: estes sao pointers files que apontam para outro filename no filesystem.

2.2.3 Permissoes para acesso a arquivos

O sistema UNIX fornece um meio facil de controlar o acesso que os usuarios do sistema possam ter
aos trés tipos de arquivos. Isso é feito para permitir ou restringir o acesso a arquivos importantes do
sistema e para garantir a privacidade de cada usudario que possua uma conta no sistema. O sistema
diferencia trés classes de usuarios. Primeiro, todo arquivo possui um dono, um proprietério, designado
no sistema por user. O proprietario tem controle total sobre a restricao ou permissao de acesso ao
arquivo a qualquer hora. Além da posse individual do arquivo, é possivel que um ou mais usuarios do
sistema possuam o arquivo coletivamente, em um tipo de propriedade de grupo. O usuério que nao for
proprietario do arquivo pode ter acesso a ele caso pertenca ao grupo de usudrios que tem permissao

UNIVERSIDADE FEDERAL FLUMINENSE 11 PETELE)))

Capitulo 2. Introducdao ao Linux 2.2. Sistema de arquivos

para isso. Porém esse usuario nao pode restringir ou permitir o acesso ao arquivo. Os usuérios que
nao sao nem proprietarios nem pertencam a um grupo que tenha acesso ao arquivo formam a tltima
categoria, conhecida simplesmente como "outros".

e Proprietario (designado por u, de user): quem criou o arquivo.

e Grupo (designado por g, de group): o grupo é formado por um ou mais usuarios que podem
ter acesso ao arquivo.

e Outros (designado por o, de others): refere-se a qualquer outro usuério do sistema.

O sistema Unix permite ainda trés modos de acesso aos arquivos: leitura, escrita e execucdo. Os
trés modos de acesso sao relativamente logicos, porém o significado desses trés modos de acesso é
diferente para arquivos de diretorios. O usuério com permissao de leitura pode ler o conteido do
diretorio, por exemplo com o comando "1s". O usuério com permissao de escrita pode usar alguns
programas privilegiados para gravar em um diretorio. A permissao de gravagao é necessaria para criar
ou remover arquivos do diretorio.

Um usuério deve ter permissao de execucdo em um diretério para ter acesso aos arquivos ali
alocados. Se um usuario tem permissao para leitura e escrita em um arquivo comum que esta listado
em um diretério mas nao tem permissao de execucao para aquele diretorio, o sistema nao o deixa ler
nem gravar o conteido daquele arquivo comum.

Assim temos:

User Greup Others
rwx rwx rwx

L 'emiss o de escrita par o dono
Pemissae leitura para o dene

0o pam o dono

Figura 2.1: Permissoes de Arquivos

Um arquivo que tiver suas permissoes como as do exemplo acima poderia ser lido, escrito ou
executado pelo dono ou por qualquer outra pessoa. Ja no exemplo abaixo, o dono podera ler e
escrever, os outros s6 poderao ler e ninguém podera executé-lo.

User Group Others
rw - r - - r - -

Para alterar essas permissoes, utliza-se o comando chmod. Veja explicacao do uso desse comando

no proximo capitulo.

2.2.4 Diretorios

Chamamos de drvore de diretorios a organizagao dos arquivos de diretorios, fazendo uma alusao as
suas ramificagoes, semelhantes aos galhos de uma arvore. Damos o nome de "raiz" ao diretério
principal que contém todos os outros subdiretoérios.

e Diretorio corrente é o diretério em que o usuario se encontra naquele determinado momento.

UNIVERSIDADE FEDERAL FLUMINENSE 12 PETELE)))

Capitulo 2. Introducdao ao Linux 2.2. Sistema de arquivos

e Diretorio "home" é onde a conta do usuario esta registrada.
e Diretério ascendente é o diretorio onde determinado arquivo ou diretério esté contido.
e Diretorio descendente é o diretorio contido em outro diretério.

e O "path" consiste na lista de diretorios que precisa ser atravessada, desde o diretorio raiz até o
arquivo, com barras separando os componentes. Path absoluto é o caminho completo desde a raiz
até o arquivo. Se o caminho completo desde a raiz até o arquivo for /UFF/pet/cursos/Linux e 0
diretorio de trabalho do usuério fosse pet no momento, bastaria que ele digitasse cursos/Linux.
Este nome é chamado caminho relativo.

gy

L

[2] [2]

Figura 2.2: Padrao dos principais diretorios do UNIX.

Os diretorios principais, além de outros, com seu contetido estao listados abaixo:
/etc - Arquivos para administra¢ao do sistema.

/bin - Comandos UNIX mais comumente usados.
/usr - Todas as contas de usuarios e alguns comandos.
/dev - Arquivos de dispositivos de entrada e saida.
/1ib - Arquivos bibliotecas para programacao em C.
/tmp - Armazenamento de arquivos temporarios.

/mmt - Montagem de discos e periféricos.

/sbin - Diretorio usado na inicializacao do sistema. Demais pacotes para a administracao do
sistema devem ficar em /usr/sbhin ou /usr/local/sbin.

/var - Diretorio que contém arquivos variaveis, tais como spool (filas de e-mail, crontab, impressao)
e logs. Este diretorio existe para que os arquivos que necessitem ser modificados fiquem nele e nao no
/usr.

/home - Contém os diretorios pessoais dos usuérios.

/root - E o diretério que contém os arquivos do administrador (seu home). Porém alguns sistemas
Unix-like utilizam /home/root.

UNIVERSIDADE FEDERAL FLUMINENSE 13 PETELE)))

Capitulo 2. Introducdao ao Linux 2.3. Processos

/proc - Diretoério virtual onde o kernel armazena suas informagoes.

/boot - Contém a imagem do kernel e tudo o que for necessario ao processo de boot, menos con-
figuragoes.

2.3 Processos

2.3.1 Processos e subprocessos

Um processo é um simples programa que estd rodando em seu espago de enderecamento virtual proprio.
E distinto de um ’job’ ou comando, que, em sistemas UNIX, pode ser composto de muitos processos
realizando uma tnica tarefa. Comandos simples como ‘1s’ sao executados como simples processos. Um
comando composto, contendo pipes, ird4 executar um processo por segmento pipe. Para acompanhar o
status de cada processo o sistema cria um PID (Process ID) para cada processo aberto.

Existem elementos chamados guias de controle de execucao que ajudam a controlar a execugao do
programa.

Fork : é a chamada de sistema cuja execu¢do cria um processo (filho) idéntico aquele que o chamou.
Processo pai : processo que gera um novo processo.
Processo filho : Processo gerado pelo processo pai.

Pid (Process ID) : é um numero que identifica unicamente cada processo e é usado para referir-se
a ele.

PPid (Parent Process ID) : ¢ o Pid do processo pai.

2.3.2 Controle de processos

Aqui serao apresentados alguns topicos que permitirao ao usuario realizar algumas tarefas interessantes
como:

e executar mais de um processo ao mesmo tempo;
e rodar um processo em baixa prioridade.

Se vocé estiver usando um programa que ird demorar muito para terminar e vocé quer comecar
a trabalhar em outra tarefa vocé pode chamar seu programa para ser executado no que é conhecido
como segundo plano (background). Isso pode ser feito colocando no final da linha de comando o
simbolo ‘&’. Pode-se também, enquanto o programa esta sendo executado, teclar CTRL + Z. Com isso
o comando serd suspenso e o sistema largara o prompt.

Chamamos de foreground o ato de fazer com que um programa rode em primeiro plano. Neste
modo os processos podem interagir com os usudrios e exibem a execug¢ao no monitor.

Quando o comando nice é colocado antes de uma linha de comando, o tempo dedicado pela CPU
para execucao daquela tarefa é reduzido, fazendo com que ele nao atrase tanto outros processos mais
importantes. Ou seja, a prioridade daquele processo é reduzida. Esse comando deve ser usado quando
h& outros processos mais importantes rodando no sistema.

UNIVERSIDADE FEDERAL FLUMINENSE 14 PETELE)))

Capitulo 2. Introducdao ao Linux

2.3. Processos

Outros comandos relacionados a processos:

jobs lista os jobs em background.
fg [jobl leva o job para foreground.

bg [job]l leva o job para background.

ps mostra os processos que estao sendo rodados no computador.

top mostra continuamente o status de cada processo que estd rodando no computador.

kill [Pid] encerra o processo.

O exemplo abaixo ilustra o uso de alguns desses comandos. Existe o seguinte script rodando no

sistema:
#!/bin/bash
#Aviso
sleep 10m

echo Ta na Hora de Sair!!
date

Este programa emite um aviso ap6s 10 minutos de ter sido colocado para rodar, em seguida mostra
a data e a hora. Nao teria sentido deixar esse programa rodando travando o terminal enquanto vocé
poderia estar fazendo outras coisas, entao ele pode ser colocado em background para liberar o terminal.

Apo6s 10 minuntos a mensagem aparece. O programa se chama trava. sh.

$./trava.sh &

[1] 2906

$ jobs

[1]+ Running ./trava.sh &
$ ps

PID TTY TIME CMD

1916 ttypl 00:00:00 bash

2906 ttypl 00:00:00 trava.sh

2907 ttypl 00:00:00 sleep

2909 ttypl 00:00:00 ps

$

$ fg 1

./trava.sh

aqui foi digitado: ctrl + z

[1]1+ Stopped ./trava.sh
$ jobs

[11+ Stopped ./trava.sh
$ jobs

UNIVERSIDADE FEDERAL FLUMINENSE 15

PETIELE)))

Capitulo 2. Introducdao ao Linux 2.3. Processos

[1]1+ Stopped ./trava.sh

$ bg 1

[11+ ./trava.sh &

$ jobs

[1]+ Running ./trava.sh &

$... comandos diversos do usudrio enquanto ele espera a mensagem aparecer ...

$ Ta na Hora de Sair!!
Ter Jan 10 16:01:51 BRST 2006
aqui foi digitado: enter
[11+ Done ./trava.sh
$ jobs
$ ps
PID TTY TIME CMD
1916 ttypl 00:00:00 bash
2935 ttypl 00:00:00 ps
$

Como pode ser visto, o programa foi executado em background. O comando jobs mostrou o job
trava.sh em todos os seus estados: rodando, suspenso e executando, assim como fez o comando ps.

UNIVERSIDADE FEDERAL FLUMINENSE 16 PETELE)))

Capitulo 3

Comandos

Os sistemas operacionais UNIX e os que sdo derivados do UNIX (FreeBSD, Linux, etc) possuem muitos
comandos e aplicativos. Em geral a sintaxe de uma comando ¢ da seguinte forma:

$ comando -opgdes argumentos

Podem ser inseridos comandos seguidos na mesma linha separando-os por ponto-virgula.

Ex: $ cd;pwd

3.1 Comandos de ajuda

As distribuicoes UNIX j& vem com manuais incorporados ao sistema. Esses manuais de comandos se
localizam no diretorio /usr/man. A utilizacao da pagina de manual é bem simples, digite, por exemplo:

Sintaxe: |$ man [opgdo] <comando>

Ex:
$ man 1ls — exibe o manual do comando ‘1s’

Um modo de procura por palavra-chave pode ser usado para encontrar o nome do comando que
execute determinada tarefa. Para isso digite:

$ man -k palavra-chave

Outros comandos sao: info, whatis, apropos. Consulte o manual para informacdes sobre esses
comandos.

apropos| : procura por comandos/programas pela descrigao

Sintaxe: ’ apropos <descrigdo> ‘

E 1til quando precisamos fazer alguma coisa mas nao sabemos qual comando usar. Ele faz sua
pesquisa nas paginas de manual e suas descrigoes e lista os comandos/programas que atendem
a consulta.

17

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

3.2 Comandos e utilitarios basicos

Os comandos serao exemplificados supondo haver inicialmente um diretério chamado teste con-
tendo os seguinte arquivos: arqul.txt, arqu2.txt, cap2.tex, parl.tex, parll.tex, parlll.tex,
imag.jpg, page.html.

3.2.1 Comandos de manipulacao de arquivos

concatena e/ou exibe arquivos na saida default.

Também pode exibir o contetdo de varios arquivos em sucessao.

Sintaxe: ’cat [opgdo] <arquivo>

As principais opgoes sao:
-n — Numera as linhas.
-E — Exibe $ ao final de cada linha.

-A — Exibe todo o contetdo incluindo caracteres especiais, como acentos e espacos na forma de
codigos.

Ex: Mostra o contetdo do arquivo com as linhas numeradas.

$ cat -n arqul.txt

"Software Livre" & uma questédo
de liberdade, ndo de prego.
Para entender o conceito,
vocé deve pensar em

"liberdade de expressdo",
ndo em '"cerveja gratis".

O N O O WN -

Ex: Concatena na saida padrao o conteudo dos dois arquivos.

$ cat arqul.txt arqu2.txt

"Software Livre" & uma questédo
de liberdade, ndo de prego.
Para entender o conceito,
vocé deve pensar em

"liberdade de expressdo",
ndo em "cerveja gratis".

UNIVERSIDADE FEDERAL FLUMINENSE 18 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

=> A liberdade de executar o programa, para qualquer
propdsito (liberdade no. 0)
=> A liberdade de estudar como o programa funciona,
e adaptd-lo para as suas necessidades
(liberdade no. 1). Aceso ao cddigo-fonte
é um pré-requisito para esta liberdade.
=> A liberdade de redistribuir cépias de modo
que vocé possa ajudar ao seu prodéximo
(liberdade no. 2).
=> A liberdade de aperfeigoar o programa e
liberar os seus aperfeigoamentos, de modo
que toda a comunidade se beneficie.
(liberdade no. 3). Acesso ao cddigo-fonte
é um pré-requisito para esta liberdade.

- Semelhante ao comando cat, porém exibe o contetido em ordem reversa.

Sintaxe: ’tac [opgdo] <arquivo>

- Identifica o contetido e mostra na tela o tipo de arquivo.

E realizado um exame dos primeiros bytes do arquivo, seguido de uma comparacao com as regras
definidas nos arquivos:

/usr/share/misc/magic ou /etc/magic

O segundo arquivo, /etc/magic, pode ser editado pelo proprio usuario para identificar seus

arquivos.
Ex:

$ file arqul.txt

arqul.txt: IS0-8859 text

$ file image. jpg

image.jpg: JPEG image data, JFIF standard 1.01, resolution (DPI),
100 x 100 $§ file h264 h264: directory

Pelo exemplo acima, vemos que os tipos de arquivos foram: text, image e directory. Além desses
podem haver: executable, (para arquivos executéveis resultado da compilagao de um programa),
data (contendo dados geralmente ndo imprimiveis).

Veja mais opcoes no manual do sistema.

cp (copy) | Copia arquivos ou diretoérios.

Sintaxe: ’cp [opgBes] <arqfont> <arqdest>

Onde:

UNIVERSIDADE FEDERAL FLUMINENSE 19 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

arqfont é o arquivo a ser copiado;

arqdest é o nome da copia a ser criada. O nome do arqdest deve ser diferente do arqfont
caso se esteja fazendo uma copia para o mesmo diretorio. Se o arquivo destino nao existir,
ele é criado com o nome arqdest. E caso exista e nao seja um diretorio, seu contetido sera
sobrescrito.

As opcoes podem ser:

-i — Pede confirmacgao para copiar o arquivo.

-p — Mantém os dados, como por exemplo permissoes e datas do arquivo original.
-r — Copia os arquivos e diretérios recursivamente.

Ex:

$ cp arqul.txt novoarq.txt

$ 1s -1

total 44
-rw-r--r-- 1 kurumin kurumin 395 2005-03-08 21:46 apend.tex
-rw-r--r-- 1 kurumin kurumin 167 2005-03-08 22:53 arqul.txt
-rw-r--r-- 1 kurumin kurumin 606 2005-03-08 22:43 arqu2.txt
-rw-r--r-- 1 kurumin kurumin 0 2005-03-08 20:09 cap2.tex
-IWXIWXrwx 1 kurumin kurumin 5684 2005-03-05 19:29 imag.jpg
-rw-r--r-- 1 kurumin kurumin 167 2005-03-08 23:23 novoarq.txt
-Irw-r--r-- 1 kurumin kurumin 5740 2005-03-08 20:08 page.html
-rw-r--r-- 1 kurumin kurumin 113 2005-03-08 21:42 parIII.tex
-rw-r--r-- 1 kurumin kurumin 125 2005-03-08 21:41 parll.tex
-rw-r--r-- 1 kurumin kurumin 214 2005-03-08 21:40 parI.tex

Como pode ser visto no exemplo, foi criado um arquivo chamado novoarq.txt

‘rm (remove) ‘ Remove arquivos ou diretoérios

Sintaxe: ’rm [opgdes] <arql> <arq2>

Onde cada arquivo é separado por espacos em branco.

Algumas das opg¢oes podem ser:

-f — Remove todos os arquivos mesmo nao tendo permissao de escrita sem pedir confirmacao
do usuario.

-i — Remove o arquivo interativamente, ou seja, pede a confirmacgao do usuario.

UNIVERSIDADE FEDERAL FLUMINENSE 20 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

-r — Remove um diretorio e todo o seu contetido recursivamente.

Obs: Cuidado ao apagar os arquivos, pois uma vez usado o comando rm nao é possivel recuperar
0 arquivo.

Ex: Supondo o mesmo diretério exemplo com os arquivos descritos. Agora vamos apagar o
arquivo cap2.tex.

$ rm -i cap2.tex

rm: remove arquivo comum ‘cap2.tex’? y

$ 1s

apend.tex arqu2.txt mnovoarq.txt parlIIIl.tex parI.tex
arqul.txt imag.jpg page.html parll.tex

$

Foi pedida confirmagao para a exclusao do arquivo, a letra y foi digitada para confirmar, em
seguida foi usado o comando 1s para listar os arquivos. Como pode ser visto, o arquivo foi
apagado.

mv (move) | Move ou renomeia arquivos

Sintaxe: ’mv [opcao] <origem> <destino>

Remove o arquivo da origem para destino ou renomeia arquivo origem para arquivo destino.
A opcao -i pede confirmacao antes de mover um arquivo que ird sobrescrever. Exemplo:
$mv imag.jpg nova.jpg Renomeia o arquivo imag. jpg para nova. jpg.

$mv list.tex ~/teste/ Move o arquivo list.tex para o diretorio ~/teste/.

$1s
apend.tex arqu2.txt nova.jpg page.html parlII.tex
arqul.txt 1list.tex novoarq.txt parIII.tex parl.tex

Cria links entre arquivos.

Sintaxe: |In [opgao| arquivol arquivo2

Sem opc¢ao, o comando 1n d4 um outro nome para um mesmo arquivo na memoria. Ou seja,
um mesmo arquivo pode ser referenciado de duas maneiras diferentes.

Ja usando a opcao -s é criado um link simbdlico, ou seja, um arquivo que aponta para a area
onde esta o arquivo original.

Ex: Tendo o arquivo chamado arg2.txt, serd criado um link de hardware e simbolico para
ele. Observe a diferenca no tamanho dos arquivos criados. O link simbolico é apenas um
"atalho'"para o arquivo original, por isso seu tamanho é menor. Atente também para o fato do
uso do comando In sem opg¢ao nao é igual ao comando cp como pode parecer, pois 0s arquivos
continuam interligados. A modificagao de um implica na modificacao do outro.

UNIVERSIDADE FEDERAL FLUMINENSE 21 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

$ 1s -1

total 4

-Irw-r--r-- 1 kurumin kurumin 27 2006-02-03 10:36 original.txt
$ 1n original.txt hard.txt

$ 1s -1

total 8

-IrWw-r--r-- 2 kurumin kurumin 27 2006-02-03 10:36 hard.txt
-Irw-r--r-- 2 kurumin kurumin 27 2006-02-03 10:36 original.txt

$ cat hard.txt
Esse & o arquivo original

$ cat >> hard.txt
Primeira modificacédo

$ cat hard.txt
Esse & o arquivo original

Primeira modificacgdo

$ cat original.txt
Esse & o arquivo original

Primeira modificacgédo

$ 1s -1

total 8

-IrWw-r--r-- 2 kurumin kurumin 49 2006-02-03 10:38 hard.txt

-IrWw-r--r-- 2 kurumin kurumin 49 2006-02-03 10:38 original.txt

$ 1n -s original.txt simb.txt

$ 1s -1

total 9

-IrW-r--r-- 2 kurumin kurumin 49 2006-02-03 10:38 hard.txt

-IrWw-r--r-- 2 kurumin kurumin 49 2006-02-03 10:38 original.txt

lrwxrwxrwx 1 kurumin kurumin 12 2006-02-03 10:39 simb.txt -> original.txt

$ cat simb.txt
Esse & o arquivo original

Primeira modificacgdo

$ cat >> simb.txt
Segunda modificacgéo

$ cat simb.txt
Esse & o arquivo original

Primeira modificacéo

UNIVERSIDADE FEDERAL FLUMINENSE 292 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

Segunda modificagéo

$ cat original.txt
Esse & o arquivo original

Primeira modificacgdo
Segunda modificacgéo

$

Exibe a diferenca entre dois arquivos.

Sintaxe: |diff [op¢ao| arquivol arquivo2

Algumas das opcoes sao:

-b — Ignora espacos e caracteres de tabulagao.

-i — Nao diferencia maiiscula de minuscula.

-r — Processa subdiretérios quando diretérios sao comparados.
Ex:

$ cat parI.tex

parte um

esta linha esta igual nos dois
mas a linha seguinte ndo.

$ cat parII.tex

parte dois

esta linha esta igual nos dois
porem a linha seguinte ndo

$ diff parI.tex parlI.tex

lcl

< parte um

> parte dois

3c3

< mas a linha seguinte ndo.

> porem a linha seguinte né&o

$

UNIVERSIDADE FEDERAL FLUMINENSE 23 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

chmod | Altera a permissao de acesso aos arquivos.

Sintaxe: ’chmod [opgdo] <permissdes> <arquivo>

Algumas das opgdes podem ser:

-R — Se o arquivo for um diretorio, o comando muda recursivamente o modo de acesso a todos
os seus arquivos e subdiretoérios.

-c — Mostra o resultado do uso do comando ap6s seu uso.

permissdes é composto pela classe do usuario (u para dono, g para grupo, o para outros tipos e
a todos), pelos caracteres operadores (+ para acrescentar permissoes, - para retirar permissoes
e = para retirar todas as permissoes) e pelos caracteres de permissdo (r para leitura, w para
escrita e x para execugao).

Exemplos:

$ 1s -1

--WX-WX-WX 1 ze ze 5684 2005-03-05 19:29 nova.jpg
$ chmod -c atrwx

modo de ‘nova.jpg’ mudado para 0777 (rwxrwxrwx)

$ chmod -c og-x nova.jpg
modo de ‘nova.jpg’ mudado para 0766 (rwxrw-rw-)

A mudanga de permissao também pode ser feita colocando o codigo rwx na forma de nimeros
octais. Abaixo segue a equivaléncia do c6digo nas letras rwx pra ntimeros.

= 0
--X = 1
-W - = 2
- WX = 3
r-- = 4
r-x = 5
rw- = 6
I WX = 7

Ex: Supondo que o arquivo parl.tex.

$ 1s -1 parI.tex

-r--r--r-- 1 kurumin kurumin 10 2005-03-15 15:18 parl.tex
$ chmod 754 parI.tex

$ 1s -1 parI.tex

-TWXT-XTr-- 1 kurumin kurumin 10 2005-03-15 15:18 parI.tex

UNIVERSIDADE FEDERAL FLUMINENSE 24 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

Comandos para manipulacao de diretoérios

Lista o contetido de um diretério e informacgoes relativas aos arquivos.

Deriva da palavra ‘list’; quando se digita ‘1s [nome do arquivo]‘, o programa procura o ar-
quivo desejado dentro do diretorio corrente.

Ex:

$ 1s
apend.tex arqu2.txt imag.jpg parlIl.tex parI.tex
arqul.txt cap2.tex page.html parII.tex

O 1s sem argumentos mostra apenas os nomes dos arquivos.

Sintaxe: [1s [opgdo] [arquivo]

Os parametros opcionais podem ser:

-1 - lista ordenada pelo nome e em formato longo

-F — mostra barra de diretorios

-R — mostra o contetido de todos os subdiretorios

-x — lista o resultado em varias colunas na horizontal

-a — lista todos os arquivos, inclusive os ocultos

-i — exibe o nimero do inode na primeira coluna

-t — lista em ordem cronolégica em funcao da hora da ultima modificacao

-1 — lista somente os nomes dos arquivos ordenados.

Obs: podem ser usados vérios parametros opcionais em conjunto.

Ex:
$ 1s -1la
total 48

drwxr-xr-x 2 ze ze 4096 2005-03-08 21:46 .
drwxr-xr-x 31 ze ze 4096 2005-03-08 21:59 ..
-rw-r--r-- 1 ze ze 395 2005-03-08 21:46 apend.tex
-IrW-r--r-- 1 ze ze 159 2005-03-08 21:34 arqul.txt

UNIVERSIDADE FEDERAL FLUMINENSE 25 PETELE)))

Bravo Suporte

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

-rw-r--r-- 1 ze ze 1188 2005-03-08 21:36 arqu2.txt
-rw-r--r-- 1 ze ze 0 2005-03-08 20:09 cap2.tex
-TWXrWXIrwXx 1 ze ze 5684 2005-03-05 19:29 imag.jpg
-rw-r--r-- 1 ze ze 5740 2005-03-08 20:08 page.html
-rW-r--r-- 1 ze ze 113 2005-03-08 21:42 parIII.tex
-rw-r--r-- 1 ze ze 125 2005-03-08 21:41 parlIl.tex
-rw-r--r-- 1 ze ze 214 2005-03-08 21:40 parI.tex

Segue abaixo a explicacao do resultado do comando 1s -1la:
-la E a combinacio dos parametros 1 e a.

total 48 E o ntimero de blocos ocupados pelos arquivos no diretério. Em algumas versdes o tamanho
de cada bloco é de 512 Bytes e em outras de 1K Byte.

Primeiro Campo Exibe as permissoes dos arquivos.

Segundo Campo Exibe o niimero de ligacoes dos arquivos.

Terceiro Campo Exibe o proprietario do arquivo.

Quarto Campo Exibe o grupo do arquivo.

Quinto Campo Exibe o tamanho do arquivo em Bytes.

Sexto Campo Exibe a data e hora da ultima modificacao do arquivo.

Sétimo Campo Exibe informacao sobre o arquivo ou diretorio.

pwd (Present Working Directory)| : mostra o diretério corrente segundo o percurso ab-
soluto de localizacgao.

Sintaxe:

$ pwd
/home/ze/teste

cd(change directory) ‘ : Troca de diretério corrente

Sintaxe: |cd <diretério>]

Exemplo:

$ cd / Vai para o diretorio raiz.

$ cd .. Vai para o diretorio pai.

$ cd Vai para o diretorio home do usuario.
$ cd - Vai para o ultimo diretério acessado.

Ex: Suponha que o diretorio atual seja:

UNIVERSIDADE FEDERAL FLUMINENSE 26 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

$ pwd
/home/ze/teste

Fazendo

$ cd /usr/bin
$ pwd
/usr/bin

Vale a pena testar as varias opgoes deste comando, pois, conhecendo alguns atalhos, ele agiliza
a navegacao dentro do sistema. Veja a secao 3.3. Nela podem ser encontrados os caracteres
especiais mais usados.

: Cria diretoérios

Shmaxe:’mkdir [opgdes] <diretério>

Exemplo: Sera criado um diretério chamado teste

$ 1s
curso
notas
artigos
$ mkdir teste
$ 1s
curso
notas
artigos
teste

rmdir | : Remove diretorios vazios

Sintaxe: ’rmdir <diretorio>

Exemplo: O diretorio teste criado no exemplo anterior sera removido.

$ rmdir teste
$ 1s
urso
notas
artigos

UNIVERSIDADE FEDERAL FLUMINENSE 27 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

Comando para manipulacao de contas e usuéarios

: Mostra o niimero de identificagao do usuéario e dos grupos a que ele pertence.

: Mostra o nome do usuério.

[who| : Mostra os usuarios que estio utilizando os terminais.
: Mostra os usudrios que estao utilizando os terminais com informacoes adicionais.

: Troca o usuario.

Esse comando é usado para mudar o usuario no mesmo terminal. Se o comando for executado
sem qualquer nome do usuério, o padrao é mudar o usuério para root.

Ex:

$ su
Password:
#

$ su user
Password:
/home/user$

sudo | : Executa comandos como root.

adduser | : Adiciona um usuirio ou grupo no sistema

Sintaxe: ’adduser [opgdes] <usuédrio/grupo>

Por padrao, quando um usuario é adicionado, é criado um grupo com o mesmo nome do usuario.

addgroup | : adiciona um novo grupo de usudrios no sistema

Sintaxe: ’addgroup <usuario/grupo> [opgdes] ‘

passwd| : Altera a senha do usuario

Sintaxe: ’passwd <usuério> [opgdes] ‘

UNIVERSIDADE FEDERAL FLUMINENSE 28 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

Se a opgao -g for especificada a senha do grupo sera alterada.

Obs: apenas o usuario root pode alterar a senha de outros usuarios.

: Altera a identificacao de grupo do usuéario

Sintaxe: |newgrp <grupo>

Comandos diversos

alias| : Cria um apelido para o comando e seus paradmetros

Sintaxe: ’alias <apelido>=‘<comando + pardmetros>’

Exemplo: Seré criado um apelido para aprimorar o 1s

$ alias 1ls=‘ls -al -color -F’
$ 1s
RESULTADO

Exemplo: Seré criado um apelido para montar a unidade de disquete e entrar na tela.
$alias a=‘mount -t /dev/fd0/mnt/floppy/ cd/mnt/floppy’

cal| : Imprime o calendario para um determinado més/ano

Sintaxe: ’cal [més] [ano]‘

Exemplo:
$cal 6 2000

$cal 2000
Algumas opg¢oes podem ser usadas através da sintaxe: cal [opg3o]

-3 - Mostra o més atual, o anterior e o seguinte.
-y - Mostra o calendario do ano inteiro.

Veja o manual para outras opgoes.

: Limpa o terminal
Sintaxe:

Quando o terminal estiver cheio de comandos ja digitados ou de resultados de outros comandos,
é recomendavel utilizar o clear para aumentar o campo visual.

UNIVERSIDADE FEDERAL FLUMINENSE 29 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

: Mostra a data e a hora atuais do sistema

Sintaxe:

Se digitarmos ‘date -u‘, o comando ir4d mostrar o horario de Greenwich.

Confira o manual para ver como modificar a formatacao de apresentacao da data.
Para modificar a hora, é necessério estar logado como root

$ date mes/dia/hora/minuto/ano

Entao para mudar a data atual para 25 de dezembro de 2020, as duas e meia da tarde, digite:

$ date 122514302020

‘df (disk free)‘ : Mostra o espacgo livre no disco

Sintaxe: ’df [opgdes] |,

onde opg¢oes podem ser os parametros listados abaixo:

-a — mostra o espaco ocupado por todos os arquivos
-b — mostra o espaco ocupado em bytes

-c¢ — faz uma totalizacao de todo o espaco listado
-D — nao conta links simbolicos

-k — mostra o espaco ocupado em kbytes

-m — mostra o espaco ocupado em Mbytes

-S — nao calcula o espaco ocupado por subdiretorios

du (disk usage) | : Mostra o espago utilizado por arquivos e diretorios do diretdrio atual

Sintaxe: ’du [opgdes] |,

onde opc¢oes podem ser os parametros listados abaixo:

-s — relata apenas o ntmero de blocos

UNIVERSIDADE FEDERAL FLUMINENSE 30 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

-a — informa o tamanho de cada arquivo

-k — lista o tamanho em Kbytes

echo| : Escreve no terminal

Sintaxe: ’ echo [string]

Exemplos do uso do comando echo serao vistos na secao 4.4l

find| : Procura arquivos por nome

Sintaxe: ’find <caminho> [opgdes]

Exemplos:
$find / -name prova (procura no diretério raiz e subdiretérios um arquivo chamado prova)

$find / -name prova -maxdepth 3 (procura no diretorio raiz e subdiretorios, até o 3° nivel,
um arquivo chamado prova)

$find / -mmin 10’ (procura no diretorio raiz e subdiretorios um arquivo modificado ha 10
minutos atras)

$find / -links 4’° (procura no diretorio raiz e subdiretorios, todos os arquivos que possuem
4 links como referéncia)

sync| : Grava os dados do cache de disco na memdria RAM para os disco rigidos e
flexiveis

Sintaxe:

O cache é um mecanismo de aceleracao que permite que um arquivo seja armazenado na memoria,
ao invés de ser imediatamente gravado no disco. Quando o sistema estiver ocioso, o arquivo é
gravado para o disco. O Linux pode usar toda memoria RAM disponivel para o cache de
programas acelerando seu desempenho de leitura/gravagao. O uso do sync é util em disquetes
quando gravamos um programa e precisamos que os dados sejam gravados imediatamente para
retirar o disquete da unidade.

Opcoes de compactacao

O Linux possui programas de armazenamento de arquivos que podem ou nao compactar os mesmos.

: armazena véarios arquivos e diretérios dentro de um tinico arquivo (*.tar) ou dis-
positivo

Sintaxe: ’tar [opgBes] <arquivo>|,

As opc¢oes podem ser os parametros listados abaixo:

UNIVERSIDADE FEDERAL FLUMINENSE 31 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

-C — cria um novo arquivo tar

-h — armazena os arquivos apontados por links, ao invés dos links

-r — inclui arquivos ao final (append) de um arquivo tar

-t — lista o contetido de um arquivo tar

-u — somente inclui arquivos que nao estao presentes ou sao mais novos do que o arquivo tar
-w — pede confirmacao para cada acao a ser tomada

-v — mostra na tela o que esta sendo feito

-x — extrai arquivos armazenados em um arquivo tar

$ 1s

arql.txt arq2.txt hard.txt original.txt simb.txt

$ tar -cvf junto.tar arg*.txt

arql.txt

arq2.txt

$ 1s

arql.txt arq2.txt hard.txt junto.tar original.txt simb.txt
$

A fim de reduzir o espago ocupado no disco, o uso da compactacao deste arquivo se torna ftil e
eficiente. Para esta tarefa usamos o comando gzip.

: compactador de arquivos mais usado atualmente em sistemas UNIX

Sintaxe: ’gzip [opgBes] <arquivo> |,

onde opcgoes podem ser os parametros listados abaixo:
-c — concatena saida de dados

-h — lista todas as opc¢oes

-1 — lista os nomes no conteido do arquivo .gz

-r — exibe em modo recursivo

-t — usado para testar arquivos

-v — modo verbose, exibe informacoes sobre compactacao.

$ 1s

arql.txt arq2.txt hard.txt junto.tar original.txt simb.txt
$ gzip -v junto.tar

junto.tar: 97.6% -- replaced with junto.tar.gz

$ 1s

arql.txt arq2.txt hard.txt junto.tar.gz original.txt simb.txt

UNIVERSIDADE FEDERAL FLUMINENSE 32 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

: descompactador de arquivos .gz

Sintaxe: ’gunzip [opgBes] <arquivo.gz>

$ 1s

arql.txt arq2.txt hard.txt junto.tar.gz original.txt simb.txt
$ gunzip junto.tar.gz

$ 1s

arql.txt arq2.txt hard.txt junto.tar original.txt simb.txt

$

Existem outras opcoes de compactadores em sistemas UNIX. Cada um define um arquivo com
uma extensao diferente, como os exemplos:

Compactador | Descompactador | Extensao
gzip gunzip .87
pack unpack .z
compress uncompress Z
bzip2 unbzip2 .bz2
zip uzip Z1p

Tabela 3.1: Compactadores

3.2.2 Redirecionamento de entrada e saida

O UNIX trata todos os periféricos conectados ao sistema como arquivos. O teclado, por exemplo, é
um "arquivo"de entrada; o video é um arquivo de saida, assim como a impressora.

O arquivo padrao de saida (stdout) é o dispositivo no qual o UNIX deseja os resultados por
default. Esse dispositivo geralmente é o video. Praticamente todos os programas componentes do
sistema que apresentam dados, o fazem como stdout, como por exemplo, o comando 1s. Assim como
o dispositivo padrao de entrada (stdin) de dados geralmente é o teclado. Ha, também, uma saida
padrao para os erros (stderr).

Redirecionando saida padrao para um arquivo
Utilizando o simbolo > podemos redirecionar a saida que seria para o video para, por exemplo, um
arquivo em disco.

Abaixo, a saida do comando date é gravada para um arquivo de nome datas.

Exemplo:

$ date > datas

$ cat datas

UNIVERSIDADE FEDERAL FLUMINENSE 33 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

Qui Mar 17 21:20:06 BRT 2005

Acrescentando dados em um arquivo

O operador > cria um novo arquivo, caso ele nao exista. Se ele ja existe, o arquivo é sobreposto.
Usando », a saida é acrescentada ao final do arquivo se o mesmo ja existe ou é criado um novo arquivo
caso ele nao exista.

Exemplo:

$date > datas

$cat datas

Qui Mar 17 21:22:31 BRT 2005
$echo FIM DO ARQUIVO >> datas
$ cat datas

Qui Mar 17 21:22:31 BRT 2005 FIM DO ARQUIVO

No caso de erros, deve-se utilizar os simbolos 2> ou 2» para direcionar o erro da saida padrao
para um determinado arquivo.
Exemplo:

$ write 2> erros
$ cat erros
write: write: you have write permission turned off.

$ cd £ 2>> erros
$ cat erros
write: write: you have write permission turned off.

bash: cd: f: No such file or directory

$

Da mesma forma que a saida de um comando pode ser direcionada para um arquivo, um arquivo
pode ser direcionado como entrada de um comando. Isso é feito utilizando o simbolo < . Na proxima
secao teremos um exemplo de como fazer isso.

Também é possivel fazer redirecionamento de entrada utilizando o sinal « . Este simbolo indica ao
shell que o escopo de um comando comega na linha seguinte e termina quando ele encontrar o label
que o segue. Este comando é muito usado para exibir um texto em vérias linhas, sem precisar de ficar
usando o comando echo para cada linha.

Exemplo:

UNIVERSIDADE FEDERAL FLUMINENSE 34 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

$ cat <<FIM

> 1 - Opgdo UM

> 2 - Opgdo DOIS
> 3 - Opgdo TRES
> FIM

1 - Opgédo UM

2 - Opgdo DOIS

3 - Opgdo TRES

$

Organizando dados em um arquivo

O "sort"é um programa que classifica alfabeticamente as linhas de um arquivo texto. Ele obtém sua
entrada em stdin e apresenta a saida em stdout. Se quisermos ordenar os nomes contidos no arquivo
nomes utilizando sort, podemos fazer:

$cat nomes
Deri

Cod

Pato
Brunaldo
KK

$

$sort < nomes
Brunaldo

Cod

Deri

KK

Pato

$

A saida poderia ser redirecionada ao mesmo tempo para um arquivo, como mostrado abaixo:

$sort < nomes > nomesord
$cat nomesord

Brunaldo

Cod

Deri

KK

Pato

$

O sort leu o contetdo do arquivo "nomes", classificou-os e a saida, que seria feita na tela, foi
jogada para um novo arquivo chamado "nomesord". Um detalhe importante: os arquivos de entrada
e saida devem ser diferentes, pois a primeira parte do comando é a criacao do arquivo de saida. Se
este for igual ao de entrada, ele é zerado.

UNIVERSIDADE FEDERAL FLUMINENSE 35 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

Filtros

Os chamados programas " filtro"pegam sua entrada de stdin, fazem alguma modificacao nesses dados
e colocam a saida em um stdout (tela do terminal).

O mais simples programa filtro é o cat, que faz uma copia fiel da entrada na saida. Outros
programas desse tipo sao: sort, wc, que conta as linhas, caracteres e palavras, grep, que mostra as
linhas de um arquivo contendo uma seqiiéncia de caracteres, e muitos outros comandos UNIX.

Nao sao programas filtro: 1s, who, date, cal, pois, embora a saida seja para stdout, a entrada nao
é stdin.

: Remove linhas duplicadas dos arquivos.
Mas h& uma condicao: a lista deve estar ordenada.
A opcao -d faz com que sejam listados somente os nomes repetidos.

Ex: Observe que o comando uniq nao da resultado quando a lista nao esta ordenada.

$ cat lista
Alexandre
Joseé
Felipe
Tatiana
Beatriz
Eduardo
Enrico
Aline
Erica
José

$ uniq lista
Alexandre
José
Felipe
Tatiana
Beatriz
Eduardo
Enrico
Aline
Erica
José

$ sort lista | uniq
Alexandre

Aline

Beatriz

Eduardo

Enrico

UNIVERSIDADE FEDERAL FLUMINENSE 36 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

Erica
Felipe
José
Tatiana

$ sort lista | uniq -d

José

$

: Divide o arquivo em partes.

As principais opgoes sao:

-bn — Divide o arquivo em partes com n bytes de tamanho. A unidade de n pode ser em k
(kilobytes) ou M (Megabytes).

-1n — Divide o arquivo em partes com n linhas de tamanho.

Snmaxe:’split [opgbes] <arquivo> [prefixo]

Ex: O arquivo arqu2.txt serd dividido em arquivos de 3 linhas cada.

$ split -13 arqu2.txt arqlin

$ 1s -1

total 1080

-IW-r--r-- 1 kurumin kurumin 139 2006-01-11 11:36 arqlinaa
-IW-r--r-- 1 kurumin kurumin 131 2006-01-11 11:36 arqglinab
-rw-r--r-- 1 kurumin kurumin 111 2006-01-11 11:36 arqlinac
-rw-r--r-- 1 kurumin kurumin 130 2006-01-11 11:36 arqlinad
-rw-r--r-- 1 kurumin kurumin 89 2006-01-11 11:36 arqlinae
-TWXYWXYWX 1 kurumin kurumin 161 2005-04-09 21:42 arqul.txt
-TWXYWXYWX 1 kurumin kurumin 600 2006-01-11 11:27 arqu2.txt
-FWXTWXTWX 1 kurumin kurumin 10 2005-03-27 12:57 cap2.tex
-IrWXrWXrwx 1 kurumin kurumin 5615 2005-03-27 13:02 image.jpg
-ITWXrWXIrwx 1 kurumin kurumin 71 2005-03-27 13:00 page.html
-ITWXYWXYWX 1 kurumin kurumin 10 2005-03-27 12:58 parIII.tex
-TWXYWXYWX 1 kurumin kurumin 69 2006-01-10 16:42 parII.tex
-TWXT-XTr-- 1 kurumin kurumin 67 2006-01-10 16:40 parI.tex
-TWXTWXTWX 1 kurumin kurumin 161 2005-04-09 21:42 texto.txt

$ cat arqlinaa
=> A liberdade de executar o programa, para qualquer
propdsito (liberdade no. 0)
=> A liberdade de estudar como o programa funciona,
$ cat arqlinab
e adapta-lo para as suas necessidades
(liberdade no. 1). Aceso ao cddigo-fonte
€& um pré-requisito para esta liberdade.

UNIVERSIDADE FEDERAL FLUMINENSE 37 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

: Extrai colunas ou campos de um arquivo.

:

Sintaxe: ’cut [opgBes] <arquivo>

As opcoes podem ser:

-b — Seleciona campos por bytes.

-c — Seleciona campos por caracteres.

-f campos — Seleciona lista de campos, onde podem ser niimeros separados por virgula ou faixas

de ntiimeros (n1-n2), ou combinacao de ambas.

-d — Especifica o delimitador de campo.

E: O delimitador de campo informado no exemplo abaixo é um espaco em branco. Veja o

resultado da escolha do campo 4 do comando date.

$ date

Qua Jan 11 14:04:49 BRST 2006
$ date|cut -4" " -f 4
14:06:31

$ datelcut -c 5

J

$

Substitui caracteres

Pode ser usado para trocar as letras de maitsculas para mintsculas.

Sintaxe: |[tr [opgdes] <stringl> <string2>

As opc¢oes principais sao:

-c — Realiza a troca de todos os caracteres, exceto da stringl.

-d — Elimina os caracteres especificados em stringl, ignorando string2.

-s — Comprime a seqiiéncia de caracteres repetidos da string?2.

Ex: Converte as letras mintsculas para maitsculas.

UNIVERSIDADE FEDERAL FLUMINENSE 38

PETIELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

$ cat capital.txt|tr "[a-z]" "[A-Z]"
RIO DE JANEIRO

Sa0 PAULO

VITORIA

BELO HORIZONTE

$

Ex: Converte multiplos espagos em branco em um tinico espaco.

$ cat capital.txt

Rio de Janeiro
Sao Paulo
Vitoéria

Belo Horizonte

$ cat capital.txtltr -s " "
Rio de Janeiro

Sdo Paulo

Vitoéria

Belo Horizonte

$

. Exibe lado a lado contetido de arquivos.

Shmaxe:’paste [opgdes] <arquivol> <arquivo2>

As opcoes sao:

-s — exibe as linhas de um arquivo em série em vez de uma abaixo da outra.

-d ¢ — Especifica o delimitador de campos como sendo o caracter ¢ em vez da tabulacao.

Ex: Sejam os arquivos estado.txt e capital.txt. O estado serda colocado ao lado da capital,

separados por ": "

$ cat estado.txt
Rio de Janeiro
Sdo Paulo
Espirito Santo
Minas Gerais

$ cat capital.txt
Rio de Janeiro
Sdo Paulo
Vitéria

Belo Horizonte

UNIVERSIDADE FEDERAL FLUMINENSE 39

PETIELE)))

Capitulo 3. Comandos

3.2.

Comandos e utilitdrios bdsicos

$ paste -d: estado.txt capital.txt

Rio de Janeiro:Rio de Janeiro
Sdo0 Paulo:S3o Paulo

Espirito Santo:Vitdria

Minas Gerais:Belo Horizonte

$

: Conta o niimero de linhas.

Com as op¢oes:

-1 — Mostra apenas o ntimero de linhas.

-w — Apenas o nimero de palavras

-¢ — Apenas o numero de caracteres.

Sintaxe: |wc [opgdes] <arquivo>

$ wc arqu2.txt

14 90 600 arqu2.txt

$ wc -1 arqu2.txt
14 arqu2.txt

$ wc -w arqu2.txt
90 arqu2.txt

$ wc -c arqu2.txt
600 arqu2.txt

: Exibe as tltimas linhas de um arquivo

Sintaxe: ’tail [opgBes] <arquivo>

Exemplo:

$ tail -n 5 arqul.txt
Para entender o conceito,
vocé deve pensar em
"liberdade de expressdo",
ndo em "cerveja gratis".

$

As opgoes sao semelhantes a do comando head, porém serao mostradas as tltimas m linhas ou

ultimos m bytes.

UNIVERSIDADE FEDERAL FLUMINENSE

40

PETIELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

grep| : Localiza cadeias de caracteres em uma entrada definida.

Essa localizagao é baseada em expressoes regulares. A entrada do comando grep pode ser um
arquivo ou a saida de outro comando.

Sintaxe: ’grep [opgBes] "expressdo"[arquivo]

Exemplo: Serao listadas todas as linhas dos arquivos .txt que contém a palavra "liberdade".

$ grep liberdade *.txt

arqul.txt: de liberdade, ndo de prego.

arqul.txt:"liberdade de expressdo",

arqu2.txt:=> A liberdade de executar o programa, para qualquer
arqu2.txt: propdsito (liberdade no. 0)

arqu2.txt:=> A liberdade de estudar como o programa funciona,
arqu2.txt: (liberdade no. 1). Aceso ao cddigo-fonte
arqu2.txt: € um pré-requisito para esta liberdade.
arqu2.txt:=> A liberdade de redistribuir cépias de modo
arqu2.txt: (liberdade no. 2).

arqu2.txt:=> A liberdade de aperfeigoar o programa, e
arqu2.txt: (liberdade no. 3). Acesso ao cddigo-fonte
arqu2.txt: € um pré-requisito para esta liberdad

Exemplo: Serao listadas as informacoes referentes aos arquivos .jpg do diretorio corrente.

$ grep 1lslgrep *.jpg
-ITWXYWXTWX 1 ze ze 5615 2005-03-27 13:02 image.jpg

Ha também comandos variantes do grep: o egrep e o fgrep. O primeiro tem como caracteristica
adicional a possibilidade do uso de metacaracteres. O segundo nao apresenta essa funcionalidade.
A vantagem deste ultimo sobre o comando grep é sua rapidez.

Exemplo: Serao localizadas as linhas que come¢am com um caracter qualquer seguido das letras
S ou P do arquivo arql.txt.

$ egrep ’~.(SIP)’ arqul.txt
"Software Livre" & uma questédo
Para entender o conceito,

Observe que foram usados apostrofos ” para limitar a expressao procurada. Seu uso é importante
para evitar erros de interpretacao pelo shell, jA que ha caracteres com significado especial.

O caracter " foi usado para indicar o inicio da linha, o ponto . para indicar um caracter qualquer
e a barra | foi usada para representar ou logico. A expressao ~. (S|P), entdo, significa inicio de
linha com qualquer caracter seguido das letras S ou P. As expressoes com uso desses caracteres

UNIVERSIDADE FEDERAL FLUMINENSE 41 PETELE)))

Capitulo 3. Comandos 3.2. Comandos e utilitarios bdsicos

especiais sao chamadas de expressoes regulares. A secao 3.3 tem mais sobre o uso de expressoes
regulares.

As principais opc¢oes do grep sao listadas abaixo:

-i — Ignora a diferenca entre maitsculas e mintsculas
-¢c — Mostra o niimero de linhas em que a expressao foi encontrada

Exemplo: Voltando ao exemplo anterior, vamos ver em quantas linhas ocorreu a palavra liber-
dade.

$ grep -c liberdade *.txt
arqul.txt:2
arqu2.txt:10
nome.ord.txt:0

-1 — Lista somente o nome dos arquivos que contém a expressao

-n — Numera cada linha que contém a expressao procurada

head| : Mostra as linhas iniciais de um arquivo

Sintaxe: ’head [opgBes] <arquivo>

As opc¢oes podem ser:

-¢ m — Mostra o texto que ocupa o tamanho de m bytes.

-n m — Mostra o texto das m primeiras linhas. Por padrao, sao mostradas as 10 primeiras linhas
se nao for especificada nenhuma opcao.

Exemplo:

$ head -c 23 arqul.txt
"Software Livre" & uma

$

: Mostra arquivos texto tela a tela

Sintaxe: ’more [opgdo] <arquivo>

UNIVERSIDADE FEDERAL FLUMINENSE 42 PETELE)))

Capitulo 3. Comandos 3.3. FEzpressoes Regulares e Metacaracteres

As principais opg¢oes sao:

+n : exibe o arquivo a partir da linha n especificada.
-s : exibe multiplas linhas em branco como sendo apenas uma.

As teclas associadas ao more sao:

e <espaco>: para visualizar a proxima tela.
e <return>: para visualizar a proxima linha.
e : para visualizar a tela anterior.

e <f>: para avancar uma tela.

e <q>: sair do comando.

less|: Mostra arquivos texto pagina a pagina com rolagem

Sintaxe: lless <arquivo>

Tem a mesma funcao do comando more.

Pipes

Os Pipes sao a forma pela qual podemos construir uma conexao de dados entre a saida de um comando
e a entrada de outro. A saida do comando anterior serve de entrada para o posterior.

Forma de um comando pipe: comandol | comando2 |

Comandos conectados por pipe formam um pipeline.

Por exemplo: ‘1s -lal|more‘. Este comando faz a listagem longa de arquivos, que é enviada ao
comando more. O comando more tem a funcao de efetuar uma pausa a cada 25 linhas do arquivo.

Comando tee

Envia o resultado do programa para a saida padrao do terminal e, a0 mesmo tempo, para uma saida
escolhida, por exemplo, um arquivo. Este comando deve ser usado com o comando pipe.

Exemplo:

1ls -laltee listagem.txt
A saida do comando serd mostrada normalmente no terminal e, a0 mesmo tempo, gravada no arquivo
listagem.txt.

3.3 Expressoes Regulares e Metacaracteres

Expressao Regular é uma seqiiéncia de caracteres que simboliza diversas outras seqiiéncias sem pre-
cisar lista-las. Nestas expressoes, alguns caracteres recebem um significado especial, sendo chamados
de metacaracteres. E através da utilizacdo destes caracteres que podemos simbolizar uma quantidade
enorme de palavras ou frases com uma expressao bem simples.

A Tabela 3.2 mostra alguns caracteres e seus significados. Os mais utilizados sao os colchetes, o
asterisco, o ponto e a interrogacao.

UNIVERSIDADE FEDERAL FLUMINENSE 43 PETELE)))

Capitulo 3. Comandos 3.3. FEzpressoes Regulares e Metacaracteres

| Caracter | Descrigao | Exemplos
. Coringa de um caracter vi.a
L] Coincide com qualquer um dos caracteres listados [gprlato
[~] Coincide com qualquer um dos caracteres, exceto os listados | ["mf]ato
? O caracter anterior pode aparecer ou nao meios?
* O caracter anterior pode aparecer em qualquer quantidade | go*gle
+ O caracter anterior deve aparecer no minimo uma vez go-tgle
{} O caracter anterior deve aparecer na quantidade indicada go{1,5}gle
- Coincide com o comeco da linha “rio
$ Coincide com o fim da linha mente$
\b Limita uma palavra (letras, nimeros e sublinhado) \b(meu)
\ Torna os metacaracteres caracteres comuns. sério\?
| Atua como operador "ou". (co|fu)mo
() Faz com que varios caracteres sejam vistos como um so. (sai)?rei
K Qualquer caracter, em qualquer quantidade. eu.*vocé
*? Semelhante ao asterisco.
+7? Semelhante ao sinal de mais.
{}? Semelhante as chaves simples.

Tabela 3.2: Expressoes Regulares

UNIVERSIDADE FEDERAL FLUMINENSE 44 PETELE)))

Capitulo 4

Introducao ao script-shell para LINUX

4.1 Aspectos basicos

4.1.1 Script e Script Shell

O shell ¢ um interpretador de comandos que possui uma linguagem utilizada por diversas pessoas para
facilitar a realizacao de intimeras tarefas administrativas no Linux (como efetuar backup regularmente,
procurar textos, criar formatagoes), e até mesmo para criar programas um pouco mais elaborados. A
linguagem shell é interpretada, nao havendo necessidade de compilar para gerar um arquivo executavel.

Um script shell, ou simplesmente script, é um arquivo contendo uma seqiiéncia de um ou mais
comandos. Este arquivo é diretamente executavel quando chamado pelo nome.

O Shell foi escrito em diferentes versoes. Dos varios programas Shell existentes, o Bourne Shell, o
Korn Shell e o C Shell se destacam por serem os mais utilizados e conhecidos.

O Bourne Shell é conhecido como Shell padrao, sendo o mais utilizado e estando na maioria dos
sistemas Uniz like.

O Korn Shell é uma versao melhorada do Bourne Shell.

O C Shell possui uma estrutura bastante parecida com a linguagem C e é também uma versao
modificada do Bourne Shell.

Além desses, ha um shell padrao do Linux, chamado Bourne-Again Shell. Este pode ser considerado
o mais completo, sendo compativel com todos os shells citados anteriormente.

Mas qualquer programador pode fazer o seu Shell. Estes shells tornaram-se conhecidos pois ja
vinham com o sistema, exceto o Korn, que tinha que ser adquirido separadamente. O Bourne Shell
vinha com o System V e o C Shell com o BSD.

Algumas caracteristicas:

Shell Prompt Representacao
Bourn Shell = $ sh
Bourn-Again Shell = $ bash

Korn Shell = $ ksh

C shell =% csh

Capitulo 4. Introducdo ao script-shell para LINUX 4.2. Ezecucao do programa

4.2 Execucao do programa

Um programa pode ser escrito em um editor de sua preferéncia como vi, kWrite, KEdit entre outros.
O arquivo é salvo como texto comum. No inicio do arquivo deve vir escrito:

#!/bin/bash

Os caracteres especiais #! (chamados hash-bang) informam ao kernel que o proximo argumento
é o programa utilizado para executar este arquivo. No caso, /bin/bash é o shell que utilizamos. O
kernel 1& o hash-bang no inicio da linha, entao ele continua lendo os caracteres seguintes e inicia o bash.
Quando o shell 1& o hash-bang, ele o interpreta como uma linha de comentario e a ignora, iniciando a
execu¢ao do programa.

E preciso mudar a permissiao do arquivo para executavel para ele funcionar. Isso é feito pelo
comando chmod. Para que o programa seja executavel de qualquer parte do sistema é necessario salva-
lo em algum diretorio que esteja no PATH (variavel do sistema que contém a lista de diretorios onde
o shell procura pelo comando digitado). Entretanto, é permitido salva-lo em um diretério qualquer
(como o diretério home do usuério), porém na hora de executa-lo pelo prompt, é necessario que seja
indicado todo o caminho desde a raiz, ou, estando no mesmo diretorio do arquivo, digitar no prompt:
./nomearquivo.

OBS: Também é possivel modificar o PATH para incluir um diretorio de sua escolha.

Por exemplo: vamos supor que o usudrio criou uma pasta em seu diretoério para salvar seus scripts
com o nome de scripts. Para tornar esse diretério como parte do PATH faca o seguinte:

Digite no prompt:

$ echo $PATH

Esse é seu PATH atual. Em seguida digite:
$ PATH=$HOME/scripts: $PATH

e

$ echo $PATH

Esse é seu novo PATH, com seu diretorio de exemplos incluido. Agora seus scripts podem ser
executados de qualquer diretério. Porém, dessa forma, a mudanca da variavel PATH s6 vale enquanto
o shell corrente estiver aberto. Se for aberto outro shell, a mudanca nao tera efeito.

Existem arquivos que sao inicializados assim que o shell é aberto:

/etc/profile : Tem as configuragoes basicas do sistema e vale para todos os usuarios. Somente
0 root tem permissao para modificar esse arquivo.

.bash_profile ou .bash_login ou .profile ou .bashrc : Estes arquivos ficam no diretdrio
home do usuario. As modificacoes feitas nesse arquivo s6 valem para o proprio usuério. Podemos,
entao, abrir o arquivo .bashrc e colocar nele o novo PATH. Além disso, podemos incluir também
aliases.

Ex: Se tivéssemos um diretério chamado scripts e quiséssemos colocd-lo no PATH, bastaria
acrescentar a linha abaixo ao arquivo .bashrc. Também foram colocados alguns aliases.

PATH=$PATH: "/Scripts
alias c=’clear’
alias montar=’mount /dev/fd0’

UNIVERSIDADE FEDERAL FLUMINENSE 46 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.2. Ezecucao do programa

Vamos fazer um exemplo passo-a-passo agora para criar e executar um programa.
Escreva em seu editor de texto o programa abaixo e salve como um. sh.

#!/bin/bash

echo "Programa UM!"

Agora no prompt, mude as permissoes do arquivo.
$ chmod a+x um.sh

Agora é s6 chamar o programa no prompt.

$ sh um.sh

Neste caso o arquivo estava no mesmo diretorio de trabalho. E se o arquivo estivesse em um
diretorio diferente? Lembre-se de mudar o PATH!

4.2.1 Erros na execucao

Para o usuério iniciante, é bem provavel que ele se depare com alguns erros bem comuns e faceis de
resolver. Os principais sao:

e "command not found - Esse quer dizer que o shell nao encontrou seu programa.

A razao para isso pode ser que o nome do comando foi digitado de forma diferente do nome do
arquivo. Certifique-se de que o nome esta igual. Outra razao possivel é que o arquivo estd em
um local diferente do PATH padrao. Nesse caso, deve-se proceder conforme explicado na secao
anterior, que explica como salvar o arquivo.

e "Permission denied- A permissao para execuc¢ao do arquivo foi negada. O usuério deve mudar
a permissao do arquivo para executavel.

e Outro erro comum é o de sintaxe. Nesse caso o shell encontra o script e indica a linha onde
OCOITEU O erro no programa.

4.2.2 Quoting

Denomina-se quoting a funcao de remover a predefinicao ou significado especial dos metacaracteres.
Dessa forma, é possivel escrever os caracteres literalmente.
Ha 3 tipos de mecanismos para quoting:

1. Barra invertida (\) - Chamada de caracter de escape, ela remove o significado especial do
caracter seguinte a ela.

Exemplo:

UNIVERSIDADE FEDERAL FLUMINENSE 47 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.8. Comentdrios

$ echo O # & um caracter especial
0

$ echo 0O \# & um caracter especial
0 # & um caracter especial

Observe a diferenca que o uso da barra provoca.

echo agora a barra estd sendo\

usada para que seja possivel\

continuar escrevendo em outra linha\

Veja que apareceu um prompt secundario \

Mas na hora da impressdo as linhas saem seguidas.

agora a barra estd sendousada para que seja possivelcontinuar
escrevendo em outra linhaVeja que apareceu um prompt
secundario Mas na hora da impressdo as linhas saem seguidas.

vV V V V &

Neste exemplo a barra suprimiu o significado de fim de linha.

2. Aspas simples (’) - Todos os caracteres que vem entre estas aspas tem seu significado removido.

Exemplo:

$ echo ’Com aspas simples ndo & necessario colocar\

> barra para cada caracter # § x !?
Com aspas simples ndo & necessario colocar barra para
cada caracter # § * !

3. Aspas duplas (") - E semelhante & anterior, porém nio remove o significado de $, \, ", ’ e
{variével}.

4.3 Comentarios

Para deixar seu programa mais claro e facil de entender, o usuario nao s6 pode como deve acrescentar
comentarios em seu codigo-fonte utilizando o caracter # no inicio da linha. Esta linha nao seréd
executada pelo shell quando ele o encontrar. Isso é bastante ttil para permitir a leitura posterior do
arquivo, correcao de erros, mudancas no programa entre outras tarefas.

Por exemplo, no inicio de um script poderia ser escrita a sua funcao.

Script para administrar as contas dos novos usudrios

<comandos>

UNIVERSIDADE FEDERAL FLUMINENSE 48 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.4. Impressao na tela

Um bom cédigo-fonte deve ter um cabecalho identificando o autor e as funcdes do programa. E
importante lembrar que, independentemente da linguagem usada, comentarios sao essenciais para um
bom entendimento do programa escrito, tanto pelo autor como por outros usuarios.

Abaixo segue uma lista de recomendagdes que um programador deve seguir:

Escreva os comentarios no momento em que estiver escrevendo o programa.

Os comentarios devem acrescentar algo e nao apenas descrever o funcionamento do comando.

Utilize espacos em branco para aumentar a legibilidade.

Coloque um comando por linha, caso a situacao permita.

Escolha nomes representativos para as variaveis.

4.4 Impressao na tela

O comando echo permite mostrar na tela seus argumentos.
Ex:

$echo Escrevendo seu argumento
Escrevendo seu argumento

Existem caracteres especiais que sao interpretados pelo comando echo. Em algumas versoes do
Linux deve ser usado o parametro opcional -e. Esta opc¢ao habilita a interpretacao dos caracteres de
escape listados abaixo.

e \\ - Barra invertida (backslash).

e \nnn - Escreve o caracter cujo octal é nnn.

e \xHH - Escreve o caracter cujo hexadecimal ¢ HH.

e \a - Caracter de alerta sonoro (beep).

e \b - Backspace.

e \c - Suprime newline, forcando a continuagao na mesma linha.
e \f - Alimentacao de formulario.

e \n - Inicia um nova linha.

e \r - Carriege return. Retorna ao inicio da linha.

e \t - Equivale a um espaco de tabulagao horizontal.

e \v - Equivale a um espaco de tabulacao vertical.

Ex:

UNIVERSIDADE FEDERAL FLUMINENSE 49 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.5. Passagem de pardmetros e argumentos

$ echo -e "Este exemplo mostra o uso de alguns dos caracteres mostrados:
> Comegando pela contra-barra \\
> Caracter hexadecimal \100
> Usando backspace\b

> iniciando \n nova linha

> apagando o que foi \r escrito anteriormente na linha

> e tabulando \t horizontalmente e \v verticalmente."
Este exemplo mostra o uso de alguns dos caracteres mostrados:
Comegando pela contra-barra \

Caracter hexadecimal @
Usando backspace

iniciando

nova linha

escrito anteriormente na linha

e tabulando horizontalmente e

verticalmente.

OBS: Para saber a representacao octal e hexadecinal correspondente ao caracter desejado, consulte
a tabela ASCII no manual: man ascii.

Quando o usuario nao desejar que a saida do comando echo pule de linha, ele deve usar a opcgao
-n.

4.5 Passagem de parametros e argumentos

Parametros sao variaveis passadas como argumentos para o programa ou variaveis "especiais'"que
guardam certas informagoes.
Quando um programa recebe argumentos em sua linha de comando, estes sao chamados de
parametros posicionais. Eles sao numerados de acordo com a ordem em que foram passados.
Exemplo:

$ cat local.sh
#Programa recebe e mostra dados

echo Cidade: $1
echo Estado: $2
echo Pais: $3

$./local.sh Niterdéi "Rio de Janeiro" Brasil
Cidade: Niterdi

Estado: Rio de Janeiro

Pais: Brasil

Como pode ser visto no exemplo, o programa chamado local recebe 3 argumentos. O primeiro,
Cidade, é guardado na variavel $1, o segundo, Estado, em $2 e o terceiro, Pais, em $3. Porém, o shell
limita em 9 o niimero de argumentos. Para trabalhar com essa limitacao, existe o comando shift n
que faz com que os primeiros n argumentos passados nao facam parte na contagem de argumentos.

UNIVERSIDADE FEDERAL FLUMINENSE 50 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX

4.5. Passagem de parametros e arqgumentos

Exemplo: Serao passados mais de 9 argumentos para o programa, mas através do uso do comando

shift sera possivel listar todos.

$ cat shift.sh

#Programa recebe e mostra dados usando shift

echo
echo
echo
echo
echo
echo
echo
echo
echo

Argumentol:
Argumento?2:
Argumento3:
Argumento4:
Argumentob:
Argumento6:
Argumento7:
Argumento8:
Argumento9:

shift 9

echo Argumentol0: $1
echo Argumentoll: $2

$./shift.shabcdefghijlmn
Argumentol:
Argumento?2:
Argumento3:
Argumento4:
Argumentob:
Argumento6:
Argumento7:
Argumento8:
Argumento9:
Argumentol10: j
Argumentoll: 1

H- B0 H O QO T P

$1
$2
$3
$4
$5
$6
$7
$8
$9

Ha também os pardmetros especiais que podem ser usados pelo programa:

$ * - Este parametro informa uma string com todos os argumentos passados para o programa, onde
g g g
cada argumento aparece separado pelo IFS (veja a se¢ao 5.8, que fala de variaveis de sistema).

$ @ - Este parametro é semelhante ao anterior, porém os argumentos aparecem separados por espagos
em branco.

$# - Este informa o numero de argumentos passados na chamada do programa.

$? - Este guarda o valor de retorno do tltimo comando executado. Quando a execucdo do programa
acontece normalmente, é retornado 0, e se tiver ocorrido algum erro é retornado um valor
diferente de zero.

$$ - Informa o nimero do processo de um determinado programa (PID).

UNIVERSIDADE FEDERAL FLUMINENSE

PETIELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.5. Passagem de pardmetros e argumentos

$! - Informa o nimero do processo do tltimo programa sendo executado em background.

$0 - Informa o nome do shell script executado.
Exemplo: Sera visto o uso de alguns desses parametros especiais.

$ cat parametros.sh
Mostra os dados relativos aos parametros passados

echo Foram passados $# argumentos.
echo Os argumentos foram: $@.

$./parametros.sh um dois trés quatro
Foram passados 4 argumentos.
Os argumentos foram: um dois trés quatro.

4.5.1 Leitura de parametros

Quando for necessério passar algum dado para o programa, usa-se o comando read, que 1é a entrada
escrita no terminal.
Exemplo:

$ cat read.sh
uso do comando read

echo Digite uma palavra:
read algo
echo Vocé& digitou: \"$algo\"

$./read.sh

Digite uma palavra:

Por que ndo uma frase?

Vocé digitou: "Porque ndo uma frase?"

Este comando permite ainda a passagem de uma lista de variaveis, desde que estas venham sepa-

radas entre espacos em branco.
Exemplo: Agora o programa read sofreu uma modificagao para receber uma lista de variaveis.

$ cat read.sh
uso do comando read

echo Digite umas palavras:
read prim segun ter
echo Vocé digitou:

UNIVERSIDADE FEDERAL FLUMINENSE 52 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.5. Passagem de pardmetros e argumentos

echo \"$prim\"
echo \"$segun\"
echo \"$ter\"

$./read.sh

Digite umas palavras:

Mas agora eu quero digitar uma frase!
Vocé digitou:

llMaSll

"agora"

"eu quero digitar uma frase!"

Se forem passadas mais variaveis do que o comando read vai ler, a variavel excedente é interpretada
como se fizesse parte da ultima variavel. Como pode ser visto pelo exemplo anterior, onde foram
passadas mais variaveis do que as 3 que o programa leria. Entao, a terceira varidvel ficou com uma
frase.

Algumas opg¢oes podem ser usadas com o comando read. Sao elas:

e -p — Nos exemplos acima foi preciso usar o comando echo toda vez antes do comando read.
Porém, isso nao é necessario, basta usar esta opcao. O préximo exemplo mostra como.

Exemplo:

$ cat read.sh
uso do comando read

read -p "Digite umas palavras:" prim segun ter
echo Vocé digitou:

echo \"$prim\"
echo \"$segun\"
echo \"$ter\"

$./read.sh

Digite umas palavras:Dessa vez o echo ndo foi usado antes
Vocé digitou:

"Dessa"

llvezll

"o echo ndo foi usado antes"

e -s — Esse parametro serve para nao ecoar o que foi digitado. Seu uso principal é na leitura de
senhas.

e -n — Este parametro permite limitar o ntimero de caracteres que serao lidos pelo read. Sua
sintaxe é: read -n N string. Lerd apenas os N caracteres da string digitada.

UNIVERSIDADE FEDERAL FLUMINENSE 53 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.6. Funcoes

4.6 Funcoes

Fungoes sao estruturas que reinem comandos na forma de blocos légicos, permitindo a separacao do
programa em partes. Quando o nome de uma func¢ao é chamado dentro do script como um comando,
todos os comandos associados a esta funcao sao executados.

A sintaxe para o uso de fungoes é da forma:

function nome () {

<comandos>

Onde nome é o nome que serd dado a funcao criada. E comandos definem o corpo da funcao.

A principal vantagem de usar funcoes é a possibilidade de organizar o cdédigo do programa em
modulos.

O exemplo a seguir demonstra o uso de funcoes em script. Um menu de opgoes é mostrado, sendo
que cada opgao leva a execugao de uma funcao diferente.

/bin/bash

#!

#

#

Este script executa as fungdes basicas de uma calculadora:
Soma, Subtragdo, Multiplicagdo e Divis&o.
#

#

#

#

clear
menu ()
{

echo " Calculadora Basica "
echo " Operagdo apenas com inteiros "
echo "|--—---———m - | "
echo "| Escolha uma das opgdes abaixo: |[|"
echo "|--—---———m - | "
echo "| 1) Soma |
echo "| 2) Subtragdo |
echo "| 3) Multiplicagéo |
echo "| 4) Divisdo |
echo "| 5) Sair |
echo "|--— - - |
echo "|--— -~ | "

read opcao
case $opcao in

UNIVERSIDADE FEDERAL FLUMINENSE 54 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.6. Funcoes

1) soma ;;
2) subtra ;;
3) mult ;;
4) div ;;
5) exit ;;
*) "Opgdo Inexistente" ;
clear ;
menu ;;
esac
}
soma ()
{
clear
echo "Informe o primeiro ndmero"
read numl
echo "Informe o segundo nuimero"
read num2
echo "Resposta = ‘expr $numl "+" $num2‘"
menu
}
subtra()
{
clear
echo "Informe o primeiro ndmero"
read numl
echo "Informe o segundo nimero"
read num2
echo "Resposta = ‘expr $numl "-" $num2‘"
menu
}
mult ()
{
clear
echo "Informe o primeiro nimero"
read numl
echo "Informe o segundo nimero"
read num2
echo "Resposta = ‘expr $numl "*" $num2‘"
menu

UNIVERSIDADE FEDERAL FLUMINENSE 55 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.6. Funcoes

}
div()
{
clear
echo "Informe o primeiro numero"
read numl
echo "Informe o segundo numero"
read num2
echo "Resposta = ‘expr $numl "/" $num2‘"
menu
}
menu

Repare no script acima que a fungao menu foi colocada no final do programa. Experimente chamar
a funcao menu no inicio e veja o que acontece.

4.6.1 Execucao de script por outro script

E possivel executar um script de outro arquivo com se ele fosse uma funcao qualquer dentro de outro
programa. Para isso, basta escrever: . nomescript no lugar onde ele deve ser executado
Tendo como base o exemplo anterior, podemos mostrar a execucao de scripts dentro de outros.
O primeiro programa é o script principal referente ao menu de opcoes. Observe como as operagoes
sao chamadas.

#!/bin/bash

#

#

Este script executa as fung¢des basicas de uma calculadora:
Soma, Subtragdo, Multiplicagdo e Divisé&o.
#

#

#

#

PARTE -> MENU

clear

menu () {
echo " Calculadora Basica "
echo " Operagdo apenas com inteiros "
echo "|------———c - | "
echo "| Escolha uma das opgdes abaixo: |["
echo "|--—---——— - | "

UNIVERSIDADE FEDERAL FLUMINENSE 56 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.6. Funcoes

echo "| 1) Soma |
echo "| 2) Subtragdo | "
echo "| 3) Multiplicagéo |
echo "| 4) Divisdo |
echo "| 5) Sair |
echo "|--—---——— - | "
echo "|--—---———cm - | "

read opcao

case $opcao in
1) . soma.sh ;;
2) . subtra ;;
3) . mult ;;
4) . div ;;
5) exit ;;
*) "Opgdo Inexistente" ;

clear ;

menu ;;

esac

}

menu
O script seguinte refere-se a operacao de soma.

/bin/bash

#!
#
#
Este script executa as fung¢des basicas de uma calculadora:
Soma, Subtragdo, Multiplicagdo e Divisédo.

#

#

PARTE -> SOMA

soma ()

{
clear
echo "Informe o primeiro nimero"
read numl
echo "Informe o segundo nimero"
read num2
echo "Resposta = ‘expr $numl "+" $num2‘"
menu

}

soma

UNIVERSIDADE FEDERAL FLUMINENSE 57 PETELE)))

Capitulo 4. Introducdo ao script-shell para LINUX 4.7. Depuracao

4.7 Depuracgao

Para verificar os problemas e possiveis causas de erros que acontecem nos scripts, basta rodar o

programa da seguinte forma:

$ sh -x programa
A opcao -x faz com que o programa seja executado passo-a-passo, facilitando a identificacao de

erros.

UNIVERSIDADE FEDERAL FLUMINENSE 58 PETELE)))

Capitulo 5

Manipulacao de variaveis

Variével é uma posicao nomeada de memoéria, usada para guardar dados que podem ser manipulados
pelo programa.
Em shell nao é necessario declarar a varidvel como em outras linguagens de programacao.

5.1 Palavras Reservadas

Palavras reservadas sao aquelas que possuem um significado especial para o shell.
O Shell possui comandos proprios (intrinsecos) como:

! case do done elif else esac fi for function if in
select then until while { 3 time L[1]

Além disso, o Unix possui outros comandos, vistos nos capitulos anteriores.

Em programacao, geralmente trabalhamos com manipulacao de variaveis. Dessa forma, é impor-
tante lembrar que o uso dessas palavras deve ser evitado, tanto no nome dado as variaveis quanto no
nome dado ao script.

5.2 Criacao de uma variavel

Uma variavel é criada da seguinte forma:

$ nomevar=valor

Uma varidvel é reconhecida pelo shell quando ela vem precedida pelo simbolo $. Quando este
simbolo é encontrado, o shell substitui a variavel pelo seu contetido. nomevar é o nome da variavel e
valor é o contetido que sera atribuido a variavel. E importante assegurar que niao haja espaco antes
e depois do sinal "="para evitar possiveis erros de interpretacao. No exemplo acima, foi criada uma
varidvel local. Para criar um variavel global, é usado o comando export.

$ export nomevar

ou

$ export nomevar—valor

Exemplo: Seré atribuido um valor a variavel chamada var, e em seguida este valor serd mostrado
pelo comando echo.

99

Capitulo 5. Manipulacao de varidveis 5.2. Criacao de uma varidvel

$ var=Pensamento
$ echo "O conteudo & o $var"
0 conteiido & o Pensamento

Vale lembrar algumas regras para a nomenclatura de variaveis que se aplicam as linguagens de
programagao:

e O nome da variavel s6 pode comecgar com letras ou underline.
e Sao permitidos caracteres alfanuméricos.

e Nao devem haver espacos em branco nem acentos.

Exemplo: Veja o uso de aspas simples, duplas e crases com variaveis:

$ variavel="Meu login é: $user"

$ echo $variavel

Meu login &é: ze

$ variavel=’Meu hostname é&: $HOSTNAME’

$ echo $variavel

Meu hostname é: $HOSTNAME
$ variavel="0 diretorio de trabalho é: ‘pwd‘"
$ echo $variavel

0 diretorio de trabalho &: /home/ze

Quando vamos executar um script ou comando, um outro shell é chamado, executa os comandos
e entao retorna ao shell original onde foi feita a chamada. Por isso é importante lembrar de exportar
suas variaveis para que elas sejam reconhecidas pelo "shell filho".

$ cat dir.sh
#!/bin/bash

echo "Veja que o diretério vai mudar"

echo "Inicialmente o diretdério era: $PWD"

neste ponto o diretorio mudou

cd /usr/bin

echo "Agora o diretério atual & $PWD"

echo "Mas terminado o programa parece que nada aconteceu.
0 diretdério continua sendo o inicial."

$ sh dir.sh

Veja que o diretdério vai mudar

Inicialmente o diretdrio era: /home/kurumin/scripts
Agora o diretério atual & /usr/bin

Mas terminado o programa parece que nada aconteceu.
0 diretdério continua sendo o inicial.

$

UNIVERSIDADE FEDERAL FLUMINENSE 60 PETELE)))

Capitulo 5. Manipulacao de varidveis 5.3. Delecao de uma varidvel

5.3 Delecao de uma variavel

Uma variavel é apagada quando for usado o comando unset.
$unset nomevar
Exemplo: Vamos ver o que acontece quando a variavel var, criada anteriormente, for deletada.

$ unset var
$ echo "O conteiido & o $var"
0 contetudo é o

5.4 Visualizacao de variaveis

Utilizando o comando set é possivel visualizar as variaveis locais e com o comando env as variaveis
globais podem ser vistas.

5.5 Protecao de uma variavel

Para evitar alteracoes e delecao de uma determinada varidvel usa-se o comando readonly. Dessa
forma, a variavel ganha atributo de somente leitura.

$ readonly nomevar

Todas as variaveis readonly, uma vez declaradas, nao podem ser "unsetadas"ou ter seus valores
modificados. O tnico meio de apagar as varidveis readonly declaradas pelo usuario é saindo do shell
(logout).

5.6 Substituicao de variaveis

Além de substituicao de variaveis (variavel pelo seu contetido, visto em exemplos anteriores), outros
tipos de substitui¢oes sao possiveis no shell. As principais sao:

e Substituicao de comando - Nesse caso, o nome do comando é substituido pelo resultado de
sua operagao quando ele for precedido pelo simbolo $ e entre () ou vier entre sinais de crase (*).

$ (comando)
ou

‘comando‘

Geralmente este tipo de manipulacao é utilizada na passagem do resultado de um comando para
uma variavel ou para outro comando.

Exemplo:

UNIVERSIDADE FEDERAL FLUMINENSE 61 PETELE)))

Capitulo 5. Manipulacao de varidveis 5.7. Varidveis em vetores

ir=‘pw
$ d (p d(
$ echo "O diretdrio atual tem o seguinte caminho: $dir"
0 diretdério atual tem o seguinte caminho: /home/kurumin/scripts

5.7 Variaveis em vetores

O shell permite o uso de variaveis em forma de array. Ou seja, varios valores podem ser guardados
em uma variavel seguindo a ordem de uma indexacao. Assim como nao é necessario declarar o tipo
de variavel no inicio do programa, também nao é preciso declarar que uma variavel sera usada como
vetor.

Um array é criado automaticamente se for atribuido um valor em uma variavel da seguinte forma:

nomevar [indice]l=valor, onde indice ¢ um ntimero maior ou igual a zero.

Exemplo:

camada[0]=Fisica

camadal[1]=Enlace

camada[2]=Redes

echo "As 3 camadas mais baixas da internet s&o: ${camadal[*]}"
As 3 camadas mais baixas da internet sdo: Fisica Enlace Redes

& P H H

Outra forma de se atribuir valores em array é:
nomevar=(valorl, valor2, ..., valorn).

$ camada=(Fisica, Enlace, Redes)
$ echo "As 3 camadas mais baixas da internet s3o: ${camadal[*]}"
As 3 camadas mais baixas da internet sdo: Fisica, Enlace, Redes

Para fazer referéncia a um elemento do array é s6 fazer: ${nomevar[indice]}.
Para ver toda a lista de valores do array basta fazer ${nomevar[*]} ou ${nomevar[@]}. A
diferenca entre o uso do * ou @ ¢é semelhante a diferenca vista no uso de parametros especiais.

5.8 Variaveis do sistema

Existem algumas variaveis que sao proprias do sistema e outras que sao inicializadas diretamente pelo

shell.

Algumas dessas variaveis, denominadas variaveis do shell sao explicadas abaixo:
HOME - Contém o diretério home do usuéario.
LOGNAME - Contém o nome do usuario atual.

IFS — Contém o separador de campos ou argumento (Internal Field Separator). Geralmente, o IFS
é um espaco, tab, ou nova linha. Mas é possivel mudar para outro tipo de separador.

Exemplo:

UNIVERSIDADE FEDERAL FLUMINENSE 62 PETELE)))

Capitulo 5. Manipulacao de varidveis 5.8. Varidaveis do sistema

$ num=(1 2 3 4 5)
$ echo "${num[*]}"
12345

$ echo "${num[@]}"
12345

$ OLDIFS=$IFS

$ IFS=>->

$ echo "${num[*]}"
1-2-3-4-5

$ echo "${num[@]}"
12345

$ echo $IFS

$ echo "$IFS"

$ IFS=$0LDIFS
$ echo "$IFS"

Vamos entender o que foi feito: foi criado um vetor para ilustrar o IFS quando forem usados

0s caracteres e

* para listar o array. O IFS inicial & um espaco em branco, entao tanto pelo

uso do como pelo uso do *, os elementos foram listados separados por um espaco em branco.
Em seguida uma variavel chamada OLDIFS recebeu o contetdo de IFS e IF'S recebeu um hifen
(-). A separagao na listagem dos elementos saiu diferente, ou seja, o novo separador foi usado
quando foi usado o asterisco. Finalmente, o IF'S recebeu seu valor inicial, espaco em branco.
Essa mudanca permanece somente na secao em que foi modificada e até que ela seja fechada.

PATH - Armazena uma lista de diretorios onde o shell procurara pelo comando digitado.

PWD - Contém o diretoério corrente.

PS1 - Esta é denominada Primary Prompting String. Ou seja, ela é a string que esta no prompt que
vemos no shell. Geralmente a string utilizada é: \u@\h:\w $. O significado desses caracteres e
de outros principais esta explicado abaixo:

\s O nome do shell.

\u Nome do usudario que esti usando o shell.

\h O hostname

\w Contém o nome do diretorio corrente desde a raiz.

\d Mostra a data no formato: dia_da_semana més dia.

\nnn Mostra o caracter correspondente em ntimeros na base octal.
\t Mostra a hora atual no formato de 24 horas, HH:MM:SS.

\T Mostra a hora atual no formato de 12 horas, HH:MM:SS.

UNIVERSIDADE FEDERAL FLUMINENSE 63 PETELE)))

Capitulo 5. Manipulacao de varidveis 5.8. Varidaveis do sistema

e \W Contém somente o nome do diretoério corrente.

PS2 - Esta é denominada Secondary Prompting String. Ela armazena a string do prompt secundario.
O padrao usado é o caracter >. Mas pode ser mudado para os caracteres mostrados acima.

MAIL — E o nome do arquivo onde ficam guardados os e-mails.
COLUMNS - Contém o nimero de colunas da tela do terminal.

LINES - Contém o numero de linhas da tela do terminal.

Existem muitas outras varidveis que sao descritas na pagina do manual do Bash, na secao Shell
Variables.

UNIVERSIDADE FEDERAL FLUMINENSE 64 PETELE)))

Capitulo 6

Testes e Comparacoes em Script-Shell

6.1 Codigo de retorno

Antes de falar sobre testes e comparacoes é importante que o usuéario entenda como as decisoes sao
tomadas dentro de um programa.

Todo comando do UNIX retorna um co6digo e este é chamado cdodigo de retorno. Quando o comando
é executado sem erros, o codigo retornado vale 0. Porém, se houver alguma falha, é retornado um
ntmero diferente de 0.

O caracter especial 7 funciona como uma varidvel que guarda o cédigo de retorno do comando
anterior. O exemplo abaixo mostra o resultado da operagao de alguns comandos.

Exemplo: Quando acontece algum erro na execu¢ao do comando, o codigo de retorno é diferente
de zero.

$ echo "$PS1"

\u@\h:\w\$

$ echo $7

0

$ rm documento.txt

rm: cannot lstat ‘documento.txt’: No such file or directory
$ echo $7

1

6.2 Avaliacao das expressoes

As expressoes sao avaliadas no shell através do comando test ou pelo uso da expressao entre colchetes
[], uma maneira mais pratica do uso do comando test.

$ var=Z

$ test $var = w
$ echo $7

1

$ [$var = Z 1]
$ echo $7

0

Capitulo 6. Testes e Comparacoes em Script-Shell 6.3. Operadores booleanos

O resultado da expressao é retornado 0 para verdadeiro ou nao 0 para falso.

6.3 Operadores booleanos

Os operadores booleanos sao relacionados a logica e, ou, negagéo entre outras relacoes. Os operadores
que podem ser usados em expressoes no shell sao:

e -a-e (and).
e -0 -ou (or).
e ! - negagao (not).

A combinagao desses 3 operadores pode gerar outras fungoes logicas.

Varias condigoes também podem ser agrupadas com o uso de condio".
Ex:

$ cat boole.sh
#!/bin/bash

read -p "Informe um nimero e uma letra: " num letra

if [\("$num" -gt 0 -a "$num" -1t 10 \) -o \($letra = v \)]
then
echo "Acertou a faixa do numero ou a letra."
else
echo "Errou as duas informagdes."
fi
$ sh boole.sh
Informe um nimero e uma letra: 15 v
Acertou o faixa do numero ou a letra.

$

6.4 Testes Numéricos

As relacoes utilizadas para testes numéricos sao as descritas abaixo:
e -eq — Igual a (equal to).
e -gt — Maior que (greater than).

e -ge — Maior ou igual (greater or equal).

-1t — Menor que (less than).
e -le — Menor ou igual (less or equal).

e -ne — Nao-igual a (not equal to).

UNIVERSIDADE FEDERAL FLUMINENSE 66 PETELE)))

Capitulo 6. Testes e Comparacoes em Script-Shell 6.4. Testes Numéricos

A sintaxe para teste é:

[var/nimero relagdo var/nimero]

onde var/nimero indica o contetido da varidvel ou um ntmero.
Exemplo:

num=10
[$num -eq 9]; echo $7

[$num -1e 9 1; echo $7

[$num -ge 9 1; echo $?

O LA = H = PH P

Outra maneira de realizar o teste é colocando var/nimero entre aspas. Dessa forma evitamos a
ocorréncia de erros.

["var/nimero" relagdo "var/nimero"]
Exemplo: Observe o que acontece quando a expressao ¢ comparada com o valor nulo sem aspas

$ [$num -ge 1; echo $7
bash: [: 10: unary operator expected
2

$ ["$num" -ge " " 1; echo $7
0
6.4.1 O Comando let

Este comando permite outra maneira de fazer testes numéricos. Em vez de usar as relacoes citadas
anteriormente, sao usados os simbolos:

o —— —Jgual a

e > — Maior que

e >— — Maior ou igual
e < — Menor que

e <= — Menor ou igual
e = — Nao-igual a

A sintaxe é:
let expresséo
Exemplo:

$ let "O != 1"
$ echo $7
0

UNIVERSIDADE FEDERAL FLUMINENSE 67 PETELE)))

Capitulo 6. Testes e Comparacoes em Script-Shell

6.5. Testes de Strings

Uma variagao desse comando é o uso de parénteses duplo:

((expresséo))

$ ((0 <= 5)) ; echo $7
0

Essa é uma sintaxe semelhante a da linguagem C. Outro uso comum é no incremento de variaveis:

let var++ # equivalente a "var=$[$var + 1]"

let var-- # equivalente a "var=$[$var - 1 1"

Exemplo:

$ num=102

$ let num++

$ echo $num

103

$ num=$ [$num + 1]
$ echo $num

104

$ num=$((num+1))
$ echo $num

105

$ let num=num+1
$ echo $num

106

$ let num+=4

$ echo $num

110

6.5 Testes de Strings

O tamanho de uma string pode ser obtido pelo uso do comando expr length string.

Ex:

$ expr length palavra
7
$

Ex:
#!/bin/bash

echo "Digite a senha: "
read -s senha

UNIVERSIDADE FEDERAL FLUMINENSE

68

PETIELE)))

Capitulo 6. Testes e Comparacoes em Script-Shell

6.5. Testes de Strings

comp=$ (expr length $senha)

if ["$comp" -1t 6 -o "$comp" -gt 9]
then
echo "Senha Invalida."
echo "Por seguranga ndo sdo aceitas senhas com menos de
6 caracteres ou mais que 9."
echo "Informe uma nova senha."
else
echo "Senha aceita."
fi

Os operadores para testes de string podem ser:
Binarios
e = - Retorna verdadeiro se as duas strings forem iguais.

$ str=palavra

$ ["$str" = "cadeia"]
$ echo $7
1
e !=- Retorna verdadeiro se as duas strings forem diferentes.

Unarios

e -z - Retorna verdadeiro se o comprimento da string é igual a 0.

e -n - Retorna verdadeiro se o comprimento da string é diferente de 0.

$ [-n $str 1]
$ echo $7
0

A sintaxe para a comparacao de string segue o mesmo modelo para a comparacao numeérica:

["var/string" relagdo "var/string"]

A preferéncia para o uso de aspas foi dada porque geralmente as strings contém espacos em branco.

Assim, sao evitados erros de interpretacao pelo shell.

UNIVERSIDADE FEDERAL FLUMINENSE 69

PETIELE)))

Capitulo 6. Testes e Comparacoes em Script-Shell

6.6. Testes de arquivos

6.6 Testes de arquivos

Sempre que vamos trabalhar com arquivos é necessario realizar testes como os mesmos para evitar

erros. Para testar arquivos existem as opcoes:

o -d—

O arquivo é um diretorio.

e ¢ — O arquivo existe.

o f—

E um arquivo normal.

e s — O tamanho do arquivo é maior que zero.

e -1 — O arquivo tem permissao de leitura.

e -w — O arquivo tem permissao de escrita.

e -x — O arquivo tem permissao de execucao.

A sintaxe usada deve ser:
[opgdo arquivo]

Ex:

$ 1s -1 arqul.txt data

~-TWXTWXTWX
-rW-r--r--
drwxr-xr-x

$

&

= A 6 O A H O P &PHAH O &AL L - &H & O

[-d

o
O
=
o

—
|
Q.

echo

/M
|
D

echo

m
|
Hh

echo

—
|
[a]

echo

,_|
I
>

echo

1 pet 1linux 161
1 pet 1linux 95
3 pet 1linux 1312
scripts 1

$?

arqul.txt]
$7

arqul.txt]
$7

arqul.txt]
$?

data]
$7

data]
$7

2005-04-09 21:42
2005-04-07 22:00
2005-01-07 22:57

arqul.txt
data
scripts

UNIVERSIDADE FEDERAL FLUMINENSE

70

PETIELE)))

Capitulo 7

Controle de fluxo

Para as linguagens de programagao, uma das mais importantes estruturas é o controle de fluxo. Com
o shell nao é diferente. Com ele, a execucao do programa pode ser alterada de forma que diferentes
comandos podem ser executados ou ter sua ordem alterada de acordo com as decisoes tomadas. Sao
realizados saltos, desvios ou repeticoes. Nas proximas secoes explicaremos cada tipo de estrutura.

7.1 Decisao simples

A estrutura de decisao simples é aquela que realiza desvios no fluxo de controle, tomando com base o
teste de uma condicao dada, uma opcao entre duas que podem ser escolhidas.

Uma decisao simples é uma constru¢ao com os comandos if/then. Isso representa se condicao
entao realiza determinado comando.

Sintaxe:

if [expressdo]; then

comando
fi

Ex: Este programa bem simples mostra o uso do if. H& um arquivo chamado livro.txt cujo

conteudo segue abaixo:

#LIVRO #EXEMPLARES
LS s s s
eletromagnetismo 5

redes 4
calculo 8
fisica 6
eletrénica 7

O programa abaixo mostra o nimero de exemplares de um determinado assunto. Mas, primeiro,
é verificado se o livro esta na lista.

#!/bin/bash
echo -n "Qual livro vocé deseja? "

71

Capitulo 7. Controle de fluxo 7.2. Decisao mailtipla

read Livro

if grep $Livro livro.txt>>/dev/null
then echo "0 livro $Livro possui ‘grep $Livro livro.txt|cut -f2¢ exemplares."

else echo "Este livro ndo estd na lista"
fi
Obs: O diretorio /dev/null é um lugar para onde redirecionamos a saida de um comando quando
nao é desejavel que ela apareca no prompt.
7.2 Decisao miiltipla

Este tipo de estrutura engloba, além dos comandos vistos anteriormente, os comandos elif e else.
Neste caso, se a condicao dada nao for satisfeita, ha outro caminho a ser seguido, dado pelo elif, que
seria a combinacao de else com if (sendo se...). A diferenga entre o uso de elif e else if é que, se
fosse usado o ultimo, seria necessario usar o fi.

Sintaxe:

if [expressé&o]; then
comando

elif [expressio]; then
comando

elif [expressio]; then

comando

else
comando

fi

7.2.1 O comando case

Outra forma de fazer desvios miltiplos é pelo uso do comando case . Ele é semelhante ao if pois
representa tomada de decisao, mas permite miiltiplas opcoes. Esta estrutura é bastante usada quando
é necessario testar um valor em relagao a outros valores pré- estabelecidos, onde cada um desses valores
tem um bloco de comando associado.

Ex: Este exemplo d4 o Estado de acordo com o DDD digitado.

UNIVERSIDADE FEDERAL FLUMINENSE 72 PETELE)))

Capitulo 7. Controle de fluxo 7.3. Controle de loop

echo "Insira o cdédigo DDD: "
read cod

case $cod in
21) echo "Rio de Janeiro';;
11) echo "Sdo Paulo";;
3[0-8]) echo "Minas Gerais";;
*) Echo "Insira outro cdédigo";;

esac

Decisao com && e || Esses caracteres permitem a tomada de decisoes de uma forma mais reduzida.
A sintaxe usada é:

comandol && comando2

comandol || comando?2

O && faz com que o comando2 s6 seja executado se comandol retornar 0, ou seja, se comandol
retornar verdadeiro o comando?2 ¢ executado para testar se a condicao toda ¢ verdadeira.

O || executa o comando2 somente se o comandol retornar uma valor diferente de 0, ou seja, somente
se comando1l retornar falso é que comando?2 serd executado para testar se a condicao toda é verdadeira.

Ex: Se o arquivo livro.txt realmente existir serd impresso na tela: O arquivo existe.

[-e livro.txt] && echo "Arquivo Existe"

Ex: Se o diretério NovoDir nao existir é criado um diretério com 0 mesmo nome.

cd NovoDir 2> /dev/null || mkdir NovoDir

7.3 Controle de loop

Existem 3 tipos de estruturas de loop, que serao vistas na proxima secao. Esse tipo de estrutura é
usada quando é preciso executar um bloco de comandos varias vezes.

7.3.1 While

Nesta estrutura é feito o teste da condi¢ao, em seguida ocorre a execugao dos comandos. A repeticao
ocorre enquanto a condicao for verdadeira.

while <condigdo> do
<comandos>

done

UNIVERSIDADE FEDERAL FLUMINENSE 73 PETELE)))

Capitulo 7. Controle de fluxo 7.3. Controle de loop

condigdo pode ser um teste, uma avaliacao ou um comando.
Ex:

#!/bin/bash

echo "Tabela de Multiplicagdo do 7: "

i=7;

n=0;

while [$n -1le 10]

do
echo $i x $n = $(($i * $n))
let nt++

done

7.3.2 Until

Neste caso, a repeticao ocorre enquanto a condicao for falsa. Ou seja, primeiramente a condicao é
testada, se o codigo de retorno for diferente de zero os comandos sao executados. Caso contrario, a
execucao do programa continua apo6s o loop.

until <condigdo> do
<comandos>

done

condigdo pode ser um teste, uma avaliacao ou um comando.
Ex: Este exemplo é semelhante ao exemplo anterior do comando while. O que mudou foi a
condicao de teste.

#!/bin/bash
echo "Tabela de Multiplicagdo do 7: "

i=7;
n=10;
until [$n -eq 0]
do
echo $i x $n = $(($i * $n))
let n--
done

7.3.3 For

A sintaxe da estrutura for é a seguinte:

UNIVERSIDADE FEDERAL FLUMINENSE 74 PETELE)))

Capitulo 7. Controle de fluxo 7.3. Controle de loop

for variavel in lista do
<comandos>

done

Seu funcionamento segue o seguinte principio: variavel assume os valores que estao dentro da lista
durante os loops de execucao dos comandos. As listas podem ser valores passados como parametros,
dados de algum arquivo ou o resultado da execucao de algum comando. Com o exemplo abaixo fica

mais facil de entender isso.
Ex: Este programa cria diretérios com o nome diretorioNUMERQO, onde NUMERO vai de 1 a 5.

#!/bin/bash

for i in ‘seq 1 5¢
do

mkdir diretorio$i
done

O comando seq NumInicial NumFinal faz uma contagem seqiiencial do nimero inicial dado até

o nuimero final.
Para estes 3 tipos de construcao de loops, existem dois comandos que permitem alterar a rotina

de sua execucgao . Sao eles:

e break [n] - Este comando aborta a execucao do loop e salta para a proxima instrucao apos o
loop.

e continue [n] - Este comando faz com que o fluxo de execucao do programa volte para o inicio
do loop antes de completé-lo.

Ex: O Exemplo abaixo ilustra o uso de break e do continue

#!/bin/bash

echo "Tente acertar o numero "
echo "Dica: Ele estd entre 10 e 50. "

i=1
while true
do
echo "Digite o Nimero: "
read num
if [$num '= 30]
then
echo "Vocé errou. Tente outra vez"
let i++
continue

UNIVERSIDADE FEDERAL FLUMINENSE 75 PETELE)))

Capitulo 7. Controle de fluxo

7.3. Controle de loop

fi
if [$num == 30 -a $i == 1]
then
echo Vocé acertou de primeira. Parabéns!
break
fi
if [$num == 30]
then
echo Vocé acertou apdés $i tentativas.
break
fi
done
UNIVERSIDADE FEDERAL FLUMINENSE 76 PETIELE)))

Apéndice A
O Projeto GNU e o Linux

As informacoes completas que estao neste capitulo podem ser encontradas na pagina oficial do Projeto
GNU, veja ref. [11].

O Projeto GNU foi idealizado em 1983 como uma forma de trazer de volta o espirito cooperativo
que prevalecia na comunidade de informatica nos seus primérdios — para tornar a cooperacao possivel
uma vez mais, removendo os obstaculos impostos pelos donos do software proprietario.

Em 1971, quando Richard Stallman iniciou a sua carreira no MIT, ele trabalhava em um grupo que
usava software livre exclusivamente. Mesmo as empresas de informatica distribuiam software livre.
Programadores eram livres para cooperar entre si, e freqiientemente faziam isso.

Nos anos 80, quase todo o software era proprietario, o que significava que ele tinha donos que
proibiam e impediam a cooperagao entre os usuarios. Isso tornou o Projeto GNU necessério.

Todo usuério de computadores necessita de um sistema operacional; se nao existe um sistema
operacional livre, vocé nao pode nem mesmo iniciar o uso de um computador sem recorrer ao software
proprietario. Portanto, o primeiro item na agenda do software livre é um sistema operacional livre.

Nos anos 90, este objetivo foi atingido quando um kernel livre foi desenvolvido por Linus Torvalds:
este kernel era o Linux. A combinacao do Linux com o quase completo sistema GNU resultou em um
sistema operacional completo: um sistema GNU baseado no Linux (GNU /Linux), incluindo Slackware,
Debian, Red Hat, entre outros. Leia o artigo: why-gnu-linuz no site do projeto GNU.

Um sistema UNIX-like é composto por muitos programas diferentes. Alguns componentes ja
estao disponiveis como software livre, por exemplo, X Window, TeX, GNU Emacs, GNU C, Bash,
Ghostscript. Atualmente, se tem feito um esfor¢o para fornecer software para usuarios que nao sao
especialistas em computadores. Portanto, estamos trabalhando em um desktop baseado em icones,
utilizando arrastar-e-soltar para ajudar os iniciantes a utilizar o sistema GNU.

O projeto GNU nao é somente desenvolvimento e distribuicao de softwares livres. O coragao do
projeto GNU é uma idéia: que o software deve ser livre.

A.1 Software Livre

A expressao "Software livre"se refere a liberdade dos usuarios executarem, copiarem, distribuirem,
estudarem, modificarem e aperfeicoarem o software. Mais precisamente, ela se refere a quatro tipos
de liberdade, para os usuérios do software:

1. A liberdade de executar o programa, para qualquer proposito.

7

Apéndice A. O Projeto GNU e o Linux A.1. Software Livre

2. A liberdade de estudar como o programa funciona e adapta-lo para as suas necessidades. Acesso
ao codigo-fonte é um pré-requisito para esta liberdade.

3. A liberdade de redistribuir copias de modo que vocé possa ajudar ao seu proximo.

4. A liberdade de aperfeicoar o programa e liberar os seus aperfeicoamentos, de modo que toda a
comunidade se beneficie. Acesso ao codigo-fonte é um pré-requisito para esta liberdade.

E importante ressaltar que Software Livre esté ligada a liberdade de expressao, e nio de preco.

UNIVERSIDADE FEDERAL FLUMINENSE 78 PETELE)))

Apéndice B
Editor de textos vi

O programa VI é o mais famoso editor de texto ASCII do UNIX. Foi desenvolvido em Berkeley
Unwversity California por Willian Joy, a partir do editor UNIX Ed.
O VI trabalha em trés modos:

e modo digitacao ("a"ou "i")

e modo comando interno (<ESC>)

e comando na ultima linha (<ESC>":")

B.1 Comandos internos - vi

* teclar <ESC> e a letra correspondente:. As letras que podem ser usadas sao listadas abaixo:
h — move o cursor para a esquerda
1 — move o cursor para a direita
j — move o cursor para baixo
k — move 0 cursos para cima
~f — move uma tela para frente
~b — move uma tela para tras
a — insere caracter a direita do cursor
A — insere caracter no final da linha
i — insere caracter a esquerda do cursor
I — insere caracter no inicio da linha
o — insere linha abaixo do cursor
0 — insere linha acima do cursor
u — desfaz ultima modificacao
U — desfaz todas as modificacoes feitas na linha
X — apaga caracter
dw — apaga palavra
dd - apaga linha
s — substitui caracter
cw — substitui palavra
/string — procura string
? string — move o cursor para a ocorréncia anterior da palavra

79

Apéndice B. Editor de textos vi B.2. Comandos da ultima linha - vt

n — repete o ultimo / ou ?

B.2 Comandos da dltima linha - vi

* teclar <ESC>: e o comando correspondente:. Os comandos podem ser os listados abaixo:
set num — enumera o texto
set nonu — retira numeracao do texto
5,10 d — apaga da linha 5 até a linha 10
1,2 co 4 — copia linhas 1 e 2 para depois da linha 4
4,5 m 6 — move linhas 4 e 5 para depois da linha 6
1 — posiciona o cursor na primeira linha do texto
$ — posiciona o cursor no final do texto
w — salva o arquivo e continua editando
q! — sai do editor de textos sem salvar o arquivo
x — sai do editor de textos e salva o arquivo
Existem também outros editores de texto em sistemas UNIX como o vim, emacs, joe, jed, pico.

UNIVERSIDADE FEDERAL FLUMINENSE 80 PETELE)))

Referéncias Bibliograficas

1]
2]

3]
4]

5]

6]

17l

8]
9]

[10]

[11]
[12]
[13]
[14]

Neves, Julio Cezar, Programacao Shell Linux, Editora Brasport, Rio de Janeiro, 2000.

Araujo, Jairo, Comandos do Linuz - Uso eficiente e avang¢ado, Editora Ciéncia Moderna Ltda.,
Rio de janeiro, 2001

Tanenbaum, Andrew S., Sisternas Operacionais, Traducao D. A. Polli, USP, 2000.

Raimundo, Rodivaldo Marcelo, Curso Bdsico de programac¢ao em POSIX-Shell Script, Editora
Book Express, Rio de janeiro, 2000.

Tanenbaum, Andrew S., Organizacao Estruturada de Computadores , Terceira edicao, Editora
Prentice/Hall do Brasil , Rio de Janeiro, 1992.

Sites

Guia focalinux , www.focalinuz.org, Este site contém guias sobre GNU/Linux de todos os
niveis.

Bash FAQ, ftp://ftp.cwru.edu/pub/bash/FAQ), Perguntas e dividas mais freqiientes relacionadas
ao Bash.

Expressoes Regulares , http://quia-er.sourceforge.net, Guia sobre expressoes regulares.

Lista de discussao , hitp://br.groups.yahoo.com/group /shell-script, Lista de discussao do ya-
hoogrupos.

Shell Script - Por que programar tem que ser divertido, www.aurelio.net, Aurélio Marinho
Jargas, pagina pessoal. Contém uma vasta lista para referéncias sobre script-shell.

Projeto GNU, www.gnu.org, Pagina oficial do projeto GNU
www. br-linux.org
www. vivaolinuz. com.br

www. scriptbrasil. com.br

81

